
Q1 Language Concepts (20 marks) 
 
 (i) If a function body has an if statement with a missing else case, 
     then an exception is raised if its condition is false. Explain why 
     this behavior is correct. However, this situation does not occur 
     for precedures. Explain why not.     (8 marks) 
 
Ans : As expression/function need to return a result, each if statement 
 must always return an answer. Since exception can be viewed as an error 
 outcome, a missing else clause can be viewed as returning this an error 
 result. Hence: 
     if v then e1 end ==> if v then e1 else raise exception end 
 Another route to take is to return some default value in case the missing 
 else was taken. However, since Oz is untyped, it is difficult to 
 determine a suitable default, other than exception itself. 
 
 For procedures, we are often computing it for its effects. Hence, a missing 
 else clause is perfectly legitimate as it denotes the Skip instruction without 
 any effect. In case of if with statement, we can perform the following 
 translation. 
     if v then s1 end ==> if v then s1 else skip end 
 
(ii) One can claim that both the if and the case statements are 
     of equal expressive power. Elaborate on the truth or falsity 
     of this claim.  (7 marks) 
 
Ans :  we can translate any "if" to a "case" as follows: 
   if V then E1 else E2 end 
       ==> case V of true then El else E2 end 
   Similarly, it is possible to translate every case construct to an if 
     case V of c(V1,..,Vn) then E1 else E2 end 
       ==> if {Label V}=c andThen {Width V=n} then 
                 V1=V.1; .. ; Vn=v.n ; E1 
           else E2 end 
   Thus, strictly speaking they are of equal expressive power. 
   However, case construct are more concise. In this sense, you 
   could say that case construct is a more general and powerful 
   mechanism since it can do more things easily. 
 
(iii) Given the following procedure:  (5 marks) 
 
      proc {Test X} 
        case X of 
         f(a Y c) then {Browse ’case 1’} 
        else {Browse ’case 2’} 
        end 
      end 
 
      Predict what would happen when you execute the following codes: 
 
      (a) declare X Y {Test f(X b Y)} 
            => suspended since X,Y are undefined 
 
      (b) declare X Y {Test f(a Y d)} 
           => ’case 2’ displayed since else clause is taken 
 
      (c) declare X Y {Test f(a Y c)} 



          => ’case 1’ displayed 
 
 
      (d) declare X Y {Test f(X Y d)} 
           => suspended since X is undefined as mathing is strict. 
              if lazy matching had been used, we would know that 
              the 3rd argument d will fail to match c, regardless of 
              what X is defined to be. 
 
      (e) declare X Y {Test f(X Y c)} 
            => suspended since X is undefined 
 
Q2 Lambda Calculus (25 marks) 
 
 (i) Consider the following lambda expressions. Mark the free 
     variables in these expressions.  (7 marks) 
 
  free vars are marked with # 
 
    (a) (\x . y#) 
 
    (b) (\x . x) 
 
    (c) (\x. (\y. y)) x# 
 
    (d) (\x. (\y. x)) x# 
 
    (e) (\x. (\y. x)) y# 
 
    (f) \z. ((\x. z) (\x.z)) 
 
    (g) (\z. (\x. z)) (\x.z#) 
 
(ii) Consider the following lambda expressions. Count the 
     number of redexes (reducible subexpressions) in each of these 
     lambda terms.  (5 marks) 
 
  Ans : Redexes are shown underlined. These are expressions that 
        can undergo beta-reduction. 
 
    (a) (\x. x) (\x. x) 
        ---------------           ==> 1 
 
    (b) (\x. (\x.x) x) (\x. x) 
             -------- 
        ----------------------      ==> 2 
 
    (c) (\x. x x) (\x. x x) 
        -------------------      ==> 1 
 
    (d) (\x. y) ((\x. x x)(\x. x x)) 
                  ----------------- 
        ----------------------------  ==> 2 
 
    (e) (\x. x (\x. x)) 
                           ==> 0 
 



 
 
(iii) Perform beta reductions using call-by-value (leftmost innermost) 
      strategy for the following lambda expressions. If the reduction is 
      non-terminating, suggest if there is an alternative reduction that 
      terminates for the given code.  (7 marks) 
 
Let us assume leftmost-innermost but no evaluation inside a lambda 
term. 
 
    (a) (\x. x) (\x. x) 
        ==> \x. x 
 
    (b) (\x. (\x.x) x) (\x. x) 
        ==>  (\x.x) (\x. x) 
        ==>  (\x. x) 
 
 
    (c) (\x. x x) (\x. x x) 
        ==> (\x. x x) (\x. x x) 
        ==> (\x. x x) (\x. x x) 
        ==>  .... 
            goes into a loop 
 
 
   (d) (\x. y) ((\x. x x)(\x. x x)) 
       ==> (\x. y) ((\x. x x)(\x. x x)) 
       ==> (\x. y) ((\x. x x)(\x. x x)) 
       ==>  ... 
            goes into a loop since (\x. x x)(\x. x x) is chosen 
            by leftmost-innermost 
       If we had used leftmost-outermost, our reduction will 
       terminate and give: 
       ==> y 
       which avoids the loop from innermost redex. 
 
 
 
    (e) (\x. x (\x. x)) 
 
        cannot reduce as no redex! 
 
(iv) Given a lambda term T. How would you show that this term 
     is a fix-point operator? Comment briefly on the significance 
     of fix-point operators. (6 marks) 
 
     To show that T is a fix-point operator, we must prove 
     for any F: 
 
            T F = F (T F) 
     Such an operator will return a fixpoint for any F, since 
     we now have: 
 
            X = F X 
 
     where X is the fixpoint of F. 
 



     Fixpoint operators are important since they are 
     the foundations for recursive functions. With it, we can 
     implement recursion without any extra machinery. 
 
Q3 Stack ADT (20 marks) 
 
  Consider a stack ADT that is non-declarative whose operations may 
   have side-effects. An example operation is given below : 
       Push :: Stack<X>, X --> () 
       // takes a stack and an element which is pushed 
       // to the top of the stack 
   which when executed will modify its stack by adding a new 
   element to the top of the stack. 
 
 
 (a) Provide more stack ADT operations that would allow you to 
     construct, modify and query the stack ADT. Give only the 
     polymorphic type interface without implementation details.  (8 marks) 
 
     construct: 
       NewStack :: () -> Stack<X> 
     modify: 
       Pop :: Stack<X> -> X 
     query: 
       Top :: Stack<X> -> X 
       IsEmpty :: Stack<X> -> Bool 
 
 (b) Show how you would implement this non-declarative 
     stack ADT by showing how each of its operations may be 
     implemented in Oz. (Hint : You may need to use mutable 
     structure, such as Cell, Array or Dictionary.)  (12 marks) 
 
     You just need to use Cell<List<X>> as its implementation 
 
     construct: 
       % NewStack :: () -> Stack<X> 
       fun {NewStack} {NewCell nil} end 
 
     modify: 
       % Pop :: Stack<X> -> X 
       fun {Pop S} 
                   case @S of 
                     H|T then S:=T 
                              H 
                   end  % fails for empty stack 
        end 
       % Push :: {Stack<X>, X} -> () 
       fun {Push S X} S:= X|@S end 
     query: 
       % Top :: Stack<X> -> X 
       fun {Top S} 
                   case @S of 
                     H|T then H 
                     else raise exception? 
                   end  % fails for empty stack 
        end 
       % IsEmpty :: Stack<X> -> Bool 



       fun {IsEmpty S} 
                   case @S of 
                     H|T then false 
                     else true 
                   end 
        end 
 
Q4 Concurrency (15 marks) 
 
The following is a naive attempt to increase the concurrency 
of the Filter function: 
 
   fun {Filter L F} 
    case L of 
      X|Xs then if thread {F X} end 
                then X|{Filter Xs F} 
                else {Filter Xs F} end 
      else nil 
    end 
   end 
 
(i) Comment on the effectiveness of this attempt. (5-marks) 
 
 Ans : As the concurrent thread is in the conditional’s test, 
   the statement has to wait for the thread to complete 
   before continuing. Due to this dependency, the concurrency 
   here is useless. 
 
 
(ii) Suggest how you may provide an alternative Filter 
     operation with better concurrency.  Outline the 
     key steps that you need to make. Please provide a 
     narrative of your solution, but do not provide any 
     program code at all. (Hint : You may make make use 
     of message-passing concurrency.)    (10-marks) 
 
  Ans : To get effective parallelism, we will have to compute 
     all {F X} in parallel, and collect successful X in 
     a non-deterministic stream. To recover the order of 
      the elements, we may have to attach a position to 
      each X, and use this to sort the output to its 
      original order.  


