
Q1 Language Concepts (20 marks)

 (i) If a function body has an if statement with a missing else case,
 then an exception is raised if its condition is false. Explain why
 this behavior is correct. However, this situation does not occur
 for precedures. Explain why not. (8 marks)

Ans : As expression/function need to return a result, each if statement
 must always return an answer. Since exception can be viewed as an error
 outcome, a missing else clause can be viewed as returning this an error
 result. Hence:
 if v then e1 end ==> if v then e1 else raise exception end
 Another route to take is to return some default value in case the missing
 else was taken. However, since Oz is untyped, it is difficult to
 determine a suitable default, other than exception itself.

 For procedures, we are often computing it for its effects. Hence, a missing
 else clause is perfectly legitimate as it denotes the Skip instruction without
 any effect. In case of if with statement, we can perform the following
 translation.
 if v then s1 end ==> if v then s1 else skip end

(ii) One can claim that both the if and the case statements are
 of equal expressive power. Elaborate on the truth or falsity
 of this claim. (7 marks)

Ans : we can translate any "if" to a "case" as follows:
 if V then E1 else E2 end
 ==> case V of true then El else E2 end
 Similarly, it is possible to translate every case construct to an if
 case V of c(V1,..,Vn) then E1 else E2 end
 ==> if {Label V}=c andThen {Width V=n} then
 V1=V.1; .. ; Vn=v.n ; E1
 else E2 end
 Thus, strictly speaking they are of equal expressive power.
 However, case construct are more concise. In this sense, you
 could say that case construct is a more general and powerful
 mechanism since it can do more things easily.

(iii) Given the following procedure: (5 marks)

 proc {Test X}
 case X of
 f(a Y c) then {Browse ’case 1’}
 else {Browse ’case 2’}
 end
 end

 Predict what would happen when you execute the following codes:

 (a) declare X Y {Test f(X b Y)}
 => suspended since X,Y are undefined

 (b) declare X Y {Test f(a Y d)}
 => ’case 2’ displayed since else clause is taken

 (c) declare X Y {Test f(a Y c)}

 => ’case 1’ displayed

 (d) declare X Y {Test f(X Y d)}
 => suspended since X is undefined as mathing is strict.
 if lazy matching had been used, we would know that
 the 3rd argument d will fail to match c, regardless of
 what X is defined to be.

 (e) declare X Y {Test f(X Y c)}
 => suspended since X is undefined

Q2 Lambda Calculus (25 marks)

 (i) Consider the following lambda expressions. Mark the free
 variables in these expressions. (7 marks)

 free vars are marked with #

 (a) (\x . y#)

 (b) (\x . x)

 (c) (\x. (\y. y)) x#

 (d) (\x. (\y. x)) x#

 (e) (\x. (\y. x)) y#

 (f) \z. ((\x. z) (\x.z))

 (g) (\z. (\x. z)) (\x.z#)

(ii) Consider the following lambda expressions. Count the
 number of redexes (reducible subexpressions) in each of these
 lambda terms. (5 marks)

 Ans : Redexes are shown underlined. These are expressions that
 can undergo beta-reduction.

 (a) (\x. x) (\x. x)
 --------------- ==> 1

 (b) (\x. (\x.x) x) (\x. x)

 ---------------------- ==> 2

 (c) (\x. x x) (\x. x x)
 ------------------- ==> 1

 (d) (\x. y) ((\x. x x)(\x. x x))

 ---------------------------- ==> 2

 (e) (\x. x (\x. x))
 ==> 0

(iii) Perform beta reductions using call-by-value (leftmost innermost)
 strategy for the following lambda expressions. If the reduction is
 non-terminating, suggest if there is an alternative reduction that
 terminates for the given code. (7 marks)

Let us assume leftmost-innermost but no evaluation inside a lambda
term.

 (a) (\x. x) (\x. x)
 ==> \x. x

 (b) (\x. (\x.x) x) (\x. x)
 ==> (\x.x) (\x. x)
 ==> (\x. x)

 (c) (\x. x x) (\x. x x)
 ==> (\x. x x) (\x. x x)
 ==> (\x. x x) (\x. x x)
 ==>
 goes into a loop

 (d) (\x. y) ((\x. x x)(\x. x x))
 ==> (\x. y) ((\x. x x)(\x. x x))
 ==> (\x. y) ((\x. x x)(\x. x x))
 ==> ...
 goes into a loop since (\x. x x)(\x. x x) is chosen
 by leftmost-innermost
 If we had used leftmost-outermost, our reduction will
 terminate and give:
 ==> y
 which avoids the loop from innermost redex.

 (e) (\x. x (\x. x))

 cannot reduce as no redex!

(iv) Given a lambda term T. How would you show that this term
 is a fix-point operator? Comment briefly on the significance
 of fix-point operators. (6 marks)

 To show that T is a fix-point operator, we must prove
 for any F:

 T F = F (T F)
 Such an operator will return a fixpoint for any F, since
 we now have:

 X = F X

 where X is the fixpoint of F.

 Fixpoint operators are important since they are
 the foundations for recursive functions. With it, we can
 implement recursion without any extra machinery.

Q3 Stack ADT (20 marks)

 Consider a stack ADT that is non-declarative whose operations may
 have side-effects. An example operation is given below :
 Push :: Stack<X>, X --> ()
 // takes a stack and an element which is pushed
 // to the top of the stack
 which when executed will modify its stack by adding a new
 element to the top of the stack.

 (a) Provide more stack ADT operations that would allow you to
 construct, modify and query the stack ADT. Give only the
 polymorphic type interface without implementation details. (8 marks)

 construct:
 NewStack :: () -> Stack<X>
 modify:
 Pop :: Stack<X> -> X
 query:
 Top :: Stack<X> -> X
 IsEmpty :: Stack<X> -> Bool

 (b) Show how you would implement this non-declarative
 stack ADT by showing how each of its operations may be
 implemented in Oz. (Hint : You may need to use mutable
 structure, such as Cell, Array or Dictionary.) (12 marks)

 You just need to use Cell<List<X>> as its implementation

 construct:
 % NewStack :: () -> Stack<X>
 fun {NewStack} {NewCell nil} end

 modify:
 % Pop :: Stack<X> -> X
 fun {Pop S}
 case @S of
 H|T then S:=T
 H
 end % fails for empty stack
 end
 % Push :: {Stack<X>, X} -> ()
 fun {Push S X} S:= X|@S end
 query:
 % Top :: Stack<X> -> X
 fun {Top S}
 case @S of
 H|T then H
 else raise exception?
 end % fails for empty stack
 end
 % IsEmpty :: Stack<X> -> Bool

 fun {IsEmpty S}
 case @S of
 H|T then false
 else true
 end
 end

Q4 Concurrency (15 marks)

The following is a naive attempt to increase the concurrency
of the Filter function:

 fun {Filter L F}
 case L of
 X|Xs then if thread {F X} end
 then X|{Filter Xs F}
 else {Filter Xs F} end
 else nil
 end
 end

(i) Comment on the effectiveness of this attempt. (5-marks)

 Ans : As the concurrent thread is in the conditional’s test,
 the statement has to wait for the thread to complete
 before continuing. Due to this dependency, the concurrency
 here is useless.

(ii) Suggest how you may provide an alternative Filter
 operation with better concurrency. Outline the
 key steps that you need to make. Please provide a
 narrative of your solution, but do not provide any
 program code at all. (Hint : You may make make use
 of message-passing concurrency.) (10-marks)

 Ans : To get effective parallelism, we will have to compute
 all {F X} in parallel, and collect successful X in
 a non-deterministic stream. To recover the order of
 the elements, we may have to attach a position to
 each X, and use this to sort the output to its
 original order.

