
Q1 Language Concepts (20 marks)

(i) If a function body has an if statement with a missing else case,
then an exception is raised if its condition is false. Explain why
this behavior is correct. However, this situation does not occur
for precedures. Explain why not. (8 marks)

Ans : As expression/function need to return a result, each if statement
must always return an answer. Since exception can be viewed as an error
outcome, a missing else clause can be viewed as returning this an error
result. Hence:

if v then e1 end ==> if v then e1 else raise exception end
Another route to take is to return some default value in case the missing
else was taken. However, since Oz is untyped, it is difficult to
determine a suitable default, other than exception itself.

For procedures, we are often computing it for its effects. Hence, a missing
else clause is perfectly legitimate as it denotes the Skip instruction without
any effect. In case of if with statement, we can perform the following
translation.

if v then s1 end ==> if v then s1 else skip end

(ii) One can claim that both the if and the case statements are
of equal expressive power. Elaborate on the truth or falsity
of this claim. (7 marks)

Ans : we can translate any "if" to a "case" as follows:
if V then E1 else E2 end

==> case V of true then El else E2 end
Similarly, it is possible to translate every case construct to an if

case V of c(V1,..,Vn) then E1 else E2 end
==> if {Label V}=c andThen {Width V=n} then

V1=V.1; .. ; Vn=v.n ; E1
else E2 end

Thus, strictly speaking they are of equal expressive power.
However, case construct are more concise. In this sense, you
could say that case construct is a more general and powerful
mechanism since it can do more things easily.

(iii) Given the following procedure: (5 marks)

proc {Test X}
case X of
f(a Y c) then {Browse ’case 1’}

else {Browse ’case 2’}
end

end

Predict what would happen when you execute the following codes:

(a) declare X Y {Test f(X b Y)}
=> suspended since X,Y are undefined

(b) declare X Y {Test f(a Y d)}
=> ’case 2’ displayed since else clause is taken

(c) declare X Y {Test f(a Y c)}

=> ’case 1’ displayed

(d) declare X Y {Test f(X Y d)}
=> suspended since X is undefined as mathing is strict.

if lazy matching had been used, we would know that
the 3rd argument d will fail to match c, regardless of
what X is defined to be.

(e) declare X Y {Test f(X Y c)}
=> suspended since X is undefined

Q2 Lambda Calculus (25 marks)

(i) Consider the following lambda expressions. Mark the free
variables in these expressions. (7 marks)

free vars are marked with #

(a) (\x . y#)

(b) (\x . x)

(c) (\x. (\y. y)) x#

(d) (\x. (\y. x)) x#

(e) (\x. (\y. x)) y#

(f) \z. ((\x. z) (\x.z))

(g) (\z. (\x. z)) (\x.z#)

(ii) Consider the following lambda expressions. Count the
number of redexes (reducible subexpressions) in each of these
lambda terms. (5 marks)

Ans : Redexes are shown underlined. These are expressions that
can undergo beta-reduction.

(a) (\x. x) (\x. x)
--------------- ==> 1

(b) (\x. (\x.x) x) (\x. x)

---------------------- ==> 2

(c) (\x. x x) (\x. x x)
------------------- ==> 1

(d) (\x. y) ((\x. x x)(\x. x x))

---------------------------- ==> 2

(e) (\x. x (\x. x))
==> 0

(iii) Perform beta reductions using call-by-value (leftmost innermost)
strategy for the following lambda expressions. If the reduction is
non-terminating, suggest if there is an alternative reduction that
terminates for the given code. (7 marks)

Let us assume leftmost-innermost but no evaluation inside a lambda
term.

(a) (\x. x) (\x. x)
==> \x. x

(b) (\x. (\x.x) x) (\x. x)
==> (\x.x) (\x. x)
==> (\x. x)

(c) (\x. x x) (\x. x x)
==> (\x. x x) (\x. x x)
==> (\x. x x) (\x. x x)
==>

goes into a loop

(d) (\x. y) ((\x. x x)(\x. x x))
==> (\x. y) ((\x. x x)(\x. x x))
==> (\x. y) ((\x. x x)(\x. x x))
==> ...

goes into a loop since (\x. x x)(\x. x x) is chosen
by leftmost-innermost

If we had used leftmost-outermost, our reduction will
terminate and give:
==> y
which avoids the loop from innermost redex.

(e) (\x. x (\x. x))

cannot reduce as no redex!

(iv) Given a lambda term T. How would you show that this term
is a fix-point operator? Comment briefly on the significance
of fix-point operators. (6 marks)

To show that T is a fix-point operator, we must prove
for any F:

T F = F (T F)
Such an operator will return a fixpoint for any F, since
we now have:

X = F X

where X is the fixpoint of F.

Fixpoint operators are important since they are
the foundations for recursive functions. With it, we can
implement recursion without any extra machinery.

Q3 Stack ADT (20 marks)

Consider a stack ADT that is non-declarative whose operations may
have side-effects. An example operation is given below :

Push :: Stack<X>, X --> ()
// takes a stack and an element which is pushed
// to the top of the stack

which when executed will modify its stack by adding a new
element to the top of the stack.

(a) Provide more stack ADT operations that would allow you to
construct, modify and query the stack ADT. Give only the
polymorphic type interface without implementation details. (8 marks)

construct:
NewStack :: () -> Stack<X>

modify:
Pop :: Stack<X> -> X

query:
Top :: Stack<X> -> X
IsEmpty :: Stack<X> -> Bool

(b) Show how you would implement this non-declarative
stack ADT by showing how each of its operations may be
implemented in Oz. (Hint : You may need to use mutable
structure, such as Cell, Array or Dictionary.) (12 marks)

You just need to use Cell<List<X>> as its implementation

construct:
% NewStack :: () -> Stack<X>
fun {NewStack} {NewCell nil} end

modify:
% Pop :: Stack<X> -> X
fun {Pop S}

case @S of
H|T then S:=T

H
end % fails for empty stack

end
% Push :: {Stack<X>, X} -> ()
fun {Push S X} S:= X|@S end

query:
% Top :: Stack<X> -> X
fun {Top S}

case @S of
H|T then H
else raise exception?

end % fails for empty stack
end

% IsEmpty :: Stack<X> -> Bool

fun {IsEmpty S}
case @S of

H|T then false
else true

end
end

Q4 Concurrency (15 marks)

The following is a naive attempt to increase the concurrency
of the Filter function:

fun {Filter L F}
case L of

X|Xs then if thread {F X} end
then X|{Filter Xs F}
else {Filter Xs F} end

else nil
end

end

(i) Comment on the effectiveness of this attempt. (5-marks)

Ans : As the concurrent thread is in the conditional’s test,
the statement has to wait for the thread to complete
before continuing. Due to this dependency, the concurrency
here is useless.

(ii) Suggest how you may provide an alternative Filter
operation with better concurrency. Outline the
key steps that you need to make. Please provide a
narrative of your solution, but do not provide any
program code at all. (Hint : You may make make use
of message-passing concurrency.) (10-marks)

Ans : To get effective parallelism, we will have to compute
all {F X} in parallel, and collect successful X in
a non-deterministic stream. To recover the order of
the elements, we may have to attach a position to
each X, and use this to sort the output to its
original order.

