you are still here

previously, on CS2105 …

techniques for reliability

1. checksum
2. timer
3. seq number
4. ack
5. nak
1. increase range of sequence numbers

2. need to buffer more packets

Pipelining

- The alternating bit protocol is not efficient. We will use a technique called pipelining to increase its efficiency. The idea is that the sender can send \(n \) packets \((n>1)\) before it receives an acknowledgement.

- A consequence of pipelining is that (1) sender and receiver may need to buffer more than one packets, and (2) we will need more than 1 bit as the sequence number. How much buffer is needed and how many bits is needed for sequence number depends on the pipelining scheme.
Go-Back-N
Send 1 Packet

Receive ACK 3
Go-Back-N
- Sender of GBN keeps a sliding window of size N on sequence numbers. Sender can send N packets without acknowledgement.
- Receiver of GBN expects packets to be delivered in order. Out-of-order packets are discarded. Because of this, acknowledgement in GBN is cumulative.

sender
1. call from above
2. receive ACK (ok)
3. receive ACK (err)
4. timeout

call from above
receiver
1. recv expected packets
2. recv unexpected or corrupted packets

recv expected

recv others
Go-Back-N

Mid-Term Test
10 March 2007
LT33
1pm – 2pm

Make-up Lecture
10 March 2007
LT33
2pm – 3pm
Selective Repeat
Selective Repeat

- GBN leads to unnecessary retransmission since out of order packets are discarded.
- Selective repeat improves of GBN by allowing receiver to buffer packets that are received out of order. Both receiver and sender maintains a window.
- Each packet must now be individually acknowledged and we need a timer per packet.
sender
1. call from above
2. receive ACK (ok)
3. receive ACK (err)
4. timeout

call from above

recv ACK (ok)
recv ACK (err)

timeout

receiver

1. recv pkts in window
2. recv pkts before window
3. recv other packets
recv pkts in windows

recv pkts before windows

Sequence Number and Window Size
Sequence Numbers

- If the window size is too large, we can lead to situation where the receiver might confuse a new transmission with a duplicate packet.

Techniques for Reliability

1. checksum
2. timer
3. seq number
4. ack
5. nak
6. window, pipeline