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CS3233 PS 5
Given a weighted, directed graph (can have cycles), find a longest simple path (no repeated vertex) from a start vertex s to a destination vertex t. Give a description of an efficient algorithm for solving this problem. Your writeup should give definitions, pseudo-code of the algorithm and some informal justification for its correctness.

Introduction

We can solve this question using a combination of the algorithm to check if a directed graph has cycles and the algorithm to determine the longest path in a directed weighted graph.  Both of these algorithms are based on Depth First Search (DFS).
Theory

The basis of the algorithm is based on Dynamic Programming.  The recurrence can be stated as:

LP( U )  = MAX { LP( Wi ) + E( U, Wi ) }

where

LP( X ) is the longest simple path of node X to the end point

E( X, Y ) is the weight of the edge between nodes X and Y 

It should be noted that E( X, Y ) is unique, even if there are multiple edges from one node to another.  This is because we can simply choose E( X, Y ) as the maximum weighted edge (since we are looking for maximum path with no repeated vertex) and ignore the rest.

Also, reflexive edges (ie: E( X, X ) ) are ignored since we are looking for a simple path.

Algorithm


Before we describe the algorithm, let us define some terms:


StartNode 
Starting node


EndNode 
Ending node


Unvisited( X )
True if X is unvisited


Visited( X )
True of X is visited

Visiting( X )
True if X is being visited (a node is being visited if it is an ancestor node of the current node we are at
C( X, I )
The Ith child of node X

UVChild( X )
True if node X has at least one child which is unvisited

For our purposes, we consider a node to have an edge if and only if the edge is an outgoing edge.  Also, if there is a node from U to V, then U is the parent of V.

The algorithm is fairly straightforward and can be described by the following pseudo code:


FindLP( CurrentNode ) :

if CurrentNode = EndNode {

  CurrentNode.LP = 0


  CurrentNode.State ( Visited


  return

}


CurrentNode.State ( Visiting

while (true) {

  if UVChild(CurrentNode) {

    for each edge in CurrentNode {

      if Unvisited( C(CurrentNode,I) {
   C(CurrentNode,I).State ( Visiting

   FindLP( C(CurrentNode,I) )

      }

    }

  }

  MaxPath ( -
  for each edge in CurrentNode {

    Child ( C(CurrentNode,I)
    if Child.LP > - {
      if Child.LP + E(CurrentNode,Child) > MaxPath {

        MaxPath ( Child.LP + E(CurrentNode,Child)
      }


    }
  }

  CurrentNode.LP ( MaxPath

  CurrentNode.State ( Visited

}


We assume the following:

1) All nodes are marked as Unvisited at the start
2) The maximum path of all nodes is - at the start
3) The search is initiated with FindLP( StartNode )

At the end of the execution, we will arrive at 2 situations:

if StartNode.LP = -


This implies that there is no path between the starting node and the ending node

else

The longest path from StartNode to EndNode = StartNode.LP
Proof

Simple observations:
1) If V lies on the longest path from node U to the end node, the longest path from U to V is E(U, V), then the longest path from U to the end node is E(U, V) + LP(V)

2) If we calculate the longest path to the end node for all the children of U, then the longest path to the end node for U is simply maximum distance from U to any of the child + the longest path of that child to the end node

3) Because every visited node is marked Visiting or Visited, we never arrive at the same node more than once.

4) Since we never arrive at the same node more than once, any longest path we calculate will always be simple.

5) The longest path to the end node of a node is not determined until the longest path to the end node for all its children are determined.
6) If a node has no children and it is not the end node, then its longest path to the end node is set to negative infinity.

7) If the current node is the end node, then its longest path to itself is set to one and its state is set to visited.  In other words, we do not consider the children of the end node.

8) Observations 5 and 6 imply that unless we discover the end node, the longest path ever found is always negative infinity.

To prove the correctness of the algorithm, we first assume that the algorithm returns a non-maximal path.

In such a case, then there will exist a node within the path we found such that at this node X, the actual maximal path branches to another node W.  In other words, W is a child of X and the maximum path utilizes the edge (X, W), while the path returned by our algorithm does NOT utilize this edge.
In the general case, X can be the starting node it self.

In such a case, actual maximum path = Distance from start node to X + E(X, W) + LP(W) then we can conclude that

E(X, W) + LP(W) >= E(X, V) + LP(V), where V is any child node of X


However, since before we calculate LP(X), we already know LP(V) where V is any child of X.  Therefore, if the above equation holds, we arrive at a contradiction.

Therefore, we can conclude that the algorithm is correct.

