Li Mengran

Algorithm to find the longest simple path between two vertices in a directed graph

It is proven that longest simple path is a NP-Complete problem, so we adopt a brute force approach:

Representation of the graph: Vertices and Edge-List
Algorithm:

Lpath(vertex start, vertex end)

If start = end, return 0;

Mark start as visiting.

Max = 0;

For each
[image: image1.wmf]i

v

 adjacent to start, whose status flag is not visiting

If Lpath(
[image: image2.wmf]i

v

) + weight(start,
[image: image3.wmf]i

v

) > max,

Max = Lpath(
[image: image4.wmf]i

v

) + weight(start,
[image: image5.wmf]i

v

)

Mark start as not visiting

Return Max

Mark all vertices as not visiting first.

Then call Lpath(start, end)

Informal proof:

The Lpath algorithm traverses all possible simple paths between vertex start to vertex end, since whenever visiting a node, all non-visiting adjacent nodes will be traversed, and every node will be unmarked after it is finished. Therefore by taking the maximum of the length of all possible simple path, we find the longest simple path between start and end.
Informal Analysis:

Best case is trivial, a graph with no edges, time taken would be constant

Worst case occurs when
[image: image6.wmf]E

v

u

edge

V

v

u

Î

$

Î

"

)

,

(

,

,

, then the number of longest paths would be
[image: image7.wmf]1

1

0

1

1

-

-

=

»

-

-

=

å

n

n

n

i

i

n

n

n

n

. Complexity in this case is
[image: image8.wmf])

(

1

-

n

n

O

.

_1139003192.unknown

_1139003759.unknown

_1139004142.unknown

_1139004295.unknown

_1139003193.unknown

_1139003130.unknown

_1139003165.unknown

_1139003038.unknown

