Problem

Given a weighted, directed graph (can have cycles), find a longest simple path (no repeated vertex) from a start vertex s to a destination vertex t. Give a description of an efficient algorithm for solving this problem. Your writeup should give definitions, pseudo-code of the algorithm and some informal justification for its correctness.

My Thoughts

Dynamic Programming

Longest(s,t) = max(for all u, weight(s,u) + Longest(u,t))

This one won’t work because it doesn’t have optimal sub structure. For example, given source s and destination t. We have to find the longest path from s to t. Let say we pick vertex u, u is between s and t, so that there exists a longest path s (u (t, so that s (u is optimal and u (t is the optimal. And suppose there is a vertex v between u and t, so that there exists a path s (u (v (t. Clearly s (v is longer than s (u. Since the graph may have cycle, we may have a path from v (u. And we may end up a path that goes from s (v (u and we get a longer path than s (u (without going through v). Contradiction! Thus we can’t use Dynamic Programming.

[image: image1]
Brute Force

The most obvious one to solve this problem is doing brute force, trying to find all possible paths. But this approach will take O(n!) time and at most we can find it for n = 11 / 12.

Pseudo Code

int backtrack(vertex s, vertex t)

 if (s == t)

 return 0
 longest = MIN_VALUE
 for every vertex u adjacent to s
 if u is not visited
 mark u as visited

 tmp = weight(s,u) + backtrack(u,t)

 unmark u

 longest = max(longest,tmp);

 end if

 end for

 return longest
t

v

u

S

