Given a weighted, directed graph (can have cycles), find a longest simple path (no repeated vertex) from a start vertex s to a destination vertex t. Give a description of an efficient algorithm for solving this problem. Your writeup should give definitions, pseudo-code of the algorithm and some informal justification for its correctness.

The only algorithm I could think of is pretty inefficient. It is a brute-force solution combined with memoization.

First, a few definitions. The graph G is a pair of two sets (V, E), where V is a set of vertices and E is a set of edges (i, j). I will let n denote the number of vertices, and for convenience I will assume the vertices are numbered from 1 to n.
We may construct a tree containing all the simple paths that start from s. This can be done in quite a straightforward manner. The root node of the tree is s, then at the first level, we include every node that s is connected by a path to. At the i-th level, at node j, we include as j’s children every vertex that j is connected to that has not already been visited. Since we are representing paths as a tree, the vertices that have already been visited are the ancestors of j. So we do not include as children vertices that are ancestors of node j.

Intuitively, we can understand that this construction will generate all the possible simple paths from s. The number of such paths is finite, since the depth of the tree is bounded by n. Since we are only interested in finding the longest simple path from s to t, we can discard all the leaves below every node t.

The obvious brute-force strategy would be to compute the sum of weights for every path, and to choose the longest one.

How long will this algorithm take? If we assume that every two vertices is connected by an edge, at the i-th level of the tree, each node will have n-i children. So the number of possible paths is less than the number of leaves of a full tree, which is equal to (n-1)! This is exponential in n, so this algorithm is exponential at worst.

This algorithm saves some computation by saving the result of the common subproblems. Suppose there is an edge from 1 to 2, 1 to 3, 2 to 3, 3 to 2, 2 to 4 and 3 to 4, and s = 1. One branch of the tree starts from 1 to 2 to 3 to 4, and another branch goes from 1 to 3 to 2 to 4. In both these branches, we have to calculate the longest path from 4 to the target vertex t. Therefore memoisation will help eliminate redundant computation, reducing the total amount of computation quite significantly.
Start with an empty stack S.

longest_length = -1.

Push s onto S.

while(S is not empty) {

element = S.pop();

for each neighbour of element {

find the longest simple path from neighbour to t,

that does not include element or any vertex in the stack

if(memory has this configuration)

load the result from memory

else {

compute result

save result

}

compare result with present longest_length, updating if necessary

}

}

