
1 Recursively defining collections by rules

We often want to define a collection of objects by a series of recursive rules1. For
example, here is a set of rules to define the collection Nat of natural numbers:

Z : Nat
Znat

n : Nat
S(n) : Nat

Snat

The rule Znat says that we can always conclude that the symbol Z is a Nat; the
rule Snat says that we can conclude if n is a Nat then the application of the
symbol S to n is also a Nat2. We say that these rules are recursive because the
rule Snat has a premise (n : Nat) that only makes sense using the rules we are
in the process of defining. What does Nat contain? Consider four possibilities:

A incomplete NatA ≡ {Z, S(Z)}
B uninvertible NatB ≡ {Z, S(Z), S(S(Z)), . . . ,∞, S(∞), S(S(∞)), . . .}
C inductive NatC ≡ {Z, S(Z), S(S(Z)), . . .}
D coinductive NatD ≡ {Z, S(Z), S(S(Z)), . . . , S(S(S(S(S(. . .)))))}

Choice (A) is not right because it is not complete. That is, rule Snat tells us
that if n : Nat, then S(n) : Nat; choice (A) does not obey this rule since S(S(Z))
is not in NatA. For the same kind of reason we know that Nat is nonempty: rule
Znat tells us that Z must be in Nat. Choice (B) in some sense has the opposite
problem: it contains too much. When we say that a collection is defined by a
set of rules, we need the objects to be invertible. That is, every object in the
collection must have been constructed using that series of rules, so if n : nat,
then we must be able to conclude that n = Z or that there exists some n′ : Nat
such that n = S(n′) (if n was constructed with Snat). Of course, neither of
these conclusions is satisfied for ∞, so we rule out NatB.

For the remainder of this course, we will require that all collections of objects
defined by rules be both complete and invertible3. Observe that both NatC and
NatD are complete and invertible, but that they are not equal.

Choice (C) defines the minimal (or least) complete and invertible collection
satisfying the pair of rules Znat and Snat. In contrast, choice (D) defines the
maximal (greatest) complete and invertible collection satisfying the rules Znat
and Snat. Here, we use “least” and “greatest” to refer to the subset ordering;
i.e., if S is a collection of sets, then S ∈ S is the least element if

∀S′ : S(S ⊆ S′)

whereas S ∈ S is the greatest element if

∀S′ : S(S′ ⊆ S)

1We use “collection”, “set”, and “type” interchangeably to indicate a group of objects.
2In set theory, this would be written Z ∈ Nat; here we use notation from a related body of

mathematics called type theory, in which we indicate that an object v belongs to a type τ by
writing v : τ . To a first approximation, objects are elements and types are sets; v ∈ τ ≈ v : τ .

3Collections defined by rules must be complete in both set theory and type theory. Such
collections need not be invertible in set theory, while in type theory they must be invertible.
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Given a set of rules R, we say that the least collection satisfying R is the
inductively defined set generated by R. In contrast, the greatest collection
satisfying R is the coinductively defined set generated by R.

There is another way of looking at the difference between inductively defined
sets and coinductively defined sets. Recall that a collection C is invertible with
respect to a set of rules R if every element c : C can be constructed using the
rules. In an inductively defined set, we require that element’s construction be
finite—or, to say it another way, every element can be built from a terminating
computation applying the rules in R. In contrast, in a coninductively defined
set, we also include all elements whose construction is infinite—that is, we also
include all elements that can be built using nonterminating computation.

This understanding may help us understand the difference between NatC
and NatD. The collection NatC contains all of the objects generated by a fi-
nite application of the rules Znat and Snat; the “. . .” in the definition of NatC
just indicates that we keep going using the rule Snat, including elements like
S(S(S(Z))), etc. While we are defining an infinite collection of elements, each
individual element is just some finite number of applications of S applied to
the terminal element Z. In contrast, the collection NatD has two occurrences
of “. . .”; the first one is indicating that just like in the case of NatC, we keep
applying rule Snat to include elements like S(S(S(Z))); therefore,

NatC ⊂ NatD

However, NatD contains another element, which we will call ω, and which is
indicated in the definition by S(S(S(S(S(. . .))))). The element ω is generated
by an infinite application of the rule Snat; alternatively you can think of ω

as the result of an unterminating computation. Since ω requires an infinite
construction, ω 6∈ NatC. Observe that NatD is complete since

ω = S(ω)

Exercise 1. Prove NatD is invertible: ∀n : NatD
(

n = Z ∨ ∃n′(n = S(n′))
)

.

Observation. Suppose we wanted to construct NatB. Define the rule

∞ : nat ∞nat

The inductively defined set generated by the rules Znat, Snat, and ∞nat is NatB.

Convention and Notation. In this course we concentrate on inductively
defined sets, so unless we specify otherwise, a set defined by a set of rules is
assumed to be inductively defined. We also use a shorthand notation to write
down a series of recursive definitions as follows:

C = G1(. . .) | . . . | Gn(. . .)

Here, C is the type of objects we wish to define and G1 . . . Gn are a (finite)
collection of generators (constructors) separated by the distinguished symbol
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“|”. The “. . .” inside a Gi(. . .) indicate the type of the parameters (arguments)
to the generators; the type of parameters can include C itself. By convention,
if a generator takes no arguments, the “()” are omitted. For example:

NatC = Z | S(NatC)

In contrast, we would define the type NatB by:

NatB = Z | ∞ | S(NatB)

To define the type NatD, we use the same pattern as NatC,

NatD = Z | S(NatD)

but explicitly specify that the rules should be interpreted coninductively.

1.1 Defining collections by rules in Coq

Coq makes it quite easy to define inductive types; in fact the notation used is
inspired from the notation just explained. Here is how to define the type NatC:

Inductive NatC : Type :=

| Z : NatC

| S : NatC -> NatC.

That is, Coq should define a new inductively-defined Type4 named NatC with
two production rules (generators): Z, which takes no parameters; and S, which
takes a NatC as an argument5. It is simple to define a few elements of NatC:

Definition Zero : NatC := Z.

Definition One : NatC := S Zero.

(* or S(Zero), if you like extra "(" and ")" *)

Definition Two : NatC := S One.

Similarly, we can define the type NatB as:

Inductive NatB : Type :=

| NB_Z : NatB

| Infinity : NatB

| NB_S : NatB -> NatB.

4Coq uses the keyword Type to define a new type (set, collection) of objects. You may have
also noticed that Coq has a related keyword, Set. They keyword Set is a way of letting Coq
know that the object being defined is “simple” in a certain technical sense. Everything that is
of type Set could have been defined instead to have Type, but not the reverse; that is, in some
sense, Set ( Type. Things start to get complicated when you realize that the type of Set is
actually Type—that is, Set:Type. The type of Type is almost Type too—that is, Type:Type is
well-defined in Coq, but the interpretation is a little subtle. Things can start getting tricky
pretty fast; fortunately we are not likely to run into the thornier areas in this course; we will
just use Type everywhere and trust that Coq will prevent us from getting into trouble.

5Technically, it’s possible to omit the initial “|” before the first generator (Z in this case),
but most people put it in so that the generators line up nicely.
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Notice that we name the first and third generators for NatB “NB Z” and “NB S”
so that there is no naming conflict with the generators for NatC. As with NatC,
it is easy to define a few elements of NatB such as:

Definition NB_Zero : NatB := NB_Z.

Definition NB_Two := NB_S (NB_S NB_Zero).

(* Notice we left out the ": NatB" - Coq was able to guess it. *)

Coq also lets you define the coinductively defined set NatD in a very similar way:

CoInductive NatD : Type :=

| ND_Z : NatD

| ND_S : NatD -> NatD.

Notice that here we use the keyword CoInductive rather than Inductive.
Defining the simpler elements of NatD is no harder than in the previous cases:

Definition ND_Zero := ND_Z.

Definition ND_One := ND_S ND_Zero.

The interesting question, of course, is how you define the infinite element ω.
Since Coq scripts must be finite, we cannot just write

Definition omega : NatD := ND_S (ND_S (ND_S (ND_S (ND_S ...))))

We will show how to properly define ω in section 2.2.

1.2 More examples of defining sets by rules.

Since examples are very helpful, here are a few more recursively defined types:

Example 1: Binary trees (without data).

• : Tree
Leaftree

tl : Tree tr : Tree

tl tr
: Tree

Nodetree

Using our notational shorthand, we can write:

Tree = • |
Tree Tree

Here is how we write these definitions in Coq:

Inductive Tree : Type :=

| Leaf : Tree

| Node : Tree -> Tree -> Tree.

Exercise 2. Write down the set of objects inductively defined by the set of
rules Ltree and Ntree in the style of NatC above.
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Exercise 3. Define the following tree in Coq:

•
• • •

•

Example 2: Formulas in propositional logic. Here we use NatC for atoms:

p : NatC
p : Formula

Atom
F1 : Formula F2 : Formula

F1 ∧ F2 : Formula
Conjunction

F1 : Formula F2 : Formula

F1 ∨ F2 : Formula
Disjunction

F : Formula
¬F : Formula

Negation

F1 : Formula F2 : Formula

F1 → F2 : Formula
Implication

We can define this collection in our shorthand notation by starting with

Formula = Atom(NatC) | . . .

Exercise 4. Fill in the “. . .” in the above shorthand definition.
Although you have already seen this done in Coq homework two (and Coq

quiz two), here is the Coq implementation for the above definitions:

Inductive Formula : Type :=

| Atom : NatC -> Formula

| Conj : Formula -> Formula -> Formula

| Disj : Formula -> Formula -> Formula

| Neg : Formula -> Formula

| Impl : Formula -> Formula -> Formula.

Example 3: Polymorphic lists. Things can now get a bit more complicated.
We can define the collection of lists of some type τ with the following rules:

nilτ : list(τ)
Nil

v : τ L : list(τ)

v ::τ L : list(τ)
Cons

Rather than defining a single type, here we define a family of types indexed by
another type τ6. For example, if τ = NatC, then we have the set of lists with
elements NatC. We can define an element of type list(NatC) as follows:

aNatList : list(NatC) ≡ Z ::NatC S(Z) ::NatC Z ::NatC nilNatC

6The technical term for the type of lists of arbitrary type is polymorphic.
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Having to explicitly write the type τ for the generators nilτ and ::τ can be a real
pain on the eyes. Usually they can be easily guessed, and we can just write:

aNatList : list(NatC) ≡ Z :: S(Z) :: Z :: nil

Still, you have to be a little careful; let’s consider a more complicated case. The
type of lists of lists of naturals is list(list(NatC)). Consider the element

aNatListList : list(list(NatC)) ≡ aNatList :: nil :: nil

This looks weird; what is the second nil doing? Things get easier to disambiguate
at the cost of added clutter when we put in the explicit type parameters:

aNatListList : list(list(NatC)) ≡ aNatList ::list(NatC) nilNatC ::list(NatC) nillist(NatC)

The first nil (boxed) has the type parameter NatC—that is, the boxed nil has type
list(NatC). Since aNatListList is a list whose elements have type list(NatC), the
first (boxed) nil is allowed to be an element. In contrast, the second nil has type
parameter list(NatC)—that is, has type list(list(NatC)), so it ends aNatListList.

Convention for type parameters. In general, we will omit the type param-
eters to avoid clutter; however, remember that they are still in the background.

Polymorphic lists in Coq. In Coq it is easy to define polymorphic lists:

Inductive PolyList (A : Type) : Type :=

| Nil : PolyList A

| Cons : A -> PolyList A -> PolyList A.

Now we define the type of lists of naturals, and its element aNatList, as follows:

Definition aNatList : PolyList NatC :=

Cons NatC Z (Cons NatC (S Z) (Cons NatC Z (Nil NatC))).

This is clear enough, but again, the type parameters are adding a lot of pain.
Fortunately, we can tell Coq that we want it to guess them by writing:

Implicit Arguments PolyList [A].

Implicit Arguments Nil [A].

Implicit Arguments Cons [A].

These instructions tell Coq to try hard to guess the parameter A when the user
writes PolyList, Nil, and Cons. Now we can just write:

Definition aNatList2 : PolyList :=

Cons Z (Cons (S Z) (Cons Z Nil)).

What is nice about the situation is that now we can easily define aNatListList:
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Definition aNatListList :=

Cons aNatList (Cons Nil Nil).

Notice how Coq automatically figured out that the first Nil has type PolyList
NatC; Coq also figured out that aNatListList has type PolyList (PolyList

NatC). Coq is usually very good at guessing types, but sometimes it is not
enough. For example, consider the following:

Definition aNil : PolyList :=

Nil.

If you try this, Coq does not have enough information to guess which type you
want, and it gives you the following cryptic error message:

Error: Cannot infer the implicit parameter A of Nil.

You need to give it some kind of hint by using the symbol @, as follows:

Definition aNil : PolyList :=

@ Nil NatC.

By using @, you tell Coq to turn off implicit arguments for the next function
(constructors like Nil are a special kind of function). Of course, instead of
providing the explicit parameter for Nil, you could provide it for PolyList:

Definition aNil : @ PolyList NatC :=

Nil.

In either case, Coq has enough information to guess what is missing.

Example 4: Streams of natural numbers. Consider the following rule:

n : nat s : stream
n @ s : stream

Strm

Let stream be the set coinductively defined by the rule Strm. Observe that one
element SconstZ : stream is the constant stream generated by Z:

SconstZ ≡ Z @ Z @ Z @ . . .

Another is the increasing stream starting from Z, SincZ : stream:

SincZ ≡ Z @ S(Z) @ S(S(Z)) @ . . .

To define streams in Coq is pretty simple:

CoInductive NatStream : Type :=

NS : NatC -> NatStream -> NatStream.

We will defer the Coq definitions of SconstZ and SincZ until section 2.2.
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1.3 Closing observations on sets defined by rules

We close with a few observations. You probably noticed that the sets NatC and
NatD differed by only one element, and you might have wondered if there were
any sets “in the middle”. For the case of the rules Znat and Snat, the answer is
clearly no; in general, however, it can happen.

Exercise 5. (?) Give a series of rules and a complete and invertible set of
objects satisfying those rules that is neither the least nor greatest.

Built-in inductive types in Coq. Our type NatC is actually almost identical
to a built-in type nat in Coq; the only difference is that the built-in type uses
O (0 is also ok in most contexts) instead of Z to indicate the base object of type
nat. Similarly, our type PolyList is very similar to the built-in type list. If
you want to use list, then you need to import the list library in Coq by writing

Require Import List.

The built-in list type uses nil for the terminal element and cons to attach an
element to the head of an existing list; for convenience the notation “::” can
be used infix (that is, in the middle) instead of cons, as follows:

Definition anEmptyList : list nat := nil.

Definition aListoOfLists := (3 :: nil) :: foo :: nil.

The dangers of recursively defined objects. One must be a little careful
when defining a set by recursive rules. Consider the following attempt:

S = S1 | S2(S → S)

Here we use “A → B” to indicate the type of functions from some type A

to B. This is an attempt to inductively define a set with two generators: S1,
which takes no arguments (like Z for NatC); and S2, which takes one argument,
which must be a function from S to S. There is a simple set-theoretic argument7

that says that the cardinality (i.e., size) of a set S is strictly lower than the
cardinality of functions from S to S. In other words, the above definition implies
that S has a strictly higher cardinality than itself—the set theoretic version of
asking for an integer n such that n < n. Of course, that is impossible!

One of the advantages of using Coq is that it can verify that a desired
recursive definition is sound8. Let’s see what Coq does with S:

Inductive Unsound : Type :=

| S1 : Unsound

| S2 : (Unsound -> Unsound) -> Unsound.

7For example, see http://en.wikipedia.org/wiki/Cantor\%27s_diagonal_argument.
8Coq’s verification is sound—everything it accepts is well-defined. However, in this place

it is incomplete—there are some sound definitions that it rejects—but it is still pretty useful.
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That is, define the constructor S1 that takes no arguments, and a second con-
structor S2 that takes a single argument, which itself must be a function from
Unsound to Unsound. Coq rejects the definition with the error message:

Error: Non strictly positive occurrence of "Unsound" in

"(Unsound -> Unsound) -> Unsound".

You are unlikely to run into this problem as long as your recursive definitions
avoid function types, but it is still something to be aware of. If you have a
definition that you are unsure about, try defining it in Coq.

Exercise 6. (??) Explain what Coq is doing here, and define (on paper) a
recursive definition that is sound but the Inductive keyword of Coq rejects.

2 Defining functions on sets defined by rules

Once we have a recursively defined set like Nat, we want to be able to define
functions (operations) on it9. For example, we would like to define the predicate
that is true (>) when given Z, and false (⊥) otherwise. Here is a first attempt:

isZero(n) ≡

{

> when n = Z

⊥ when n = S(Z)

Here we use a notation that may be familiar from mathematics courses; we
break the input n into cases. In the first case, when n = Z, isZero returns >;
in the second case, when n = S(Z), isZero returns ⊥. It is worth stressing that
breaking the input into cases only works because we have an invertible set.

Coq can take cases using the match construction, as follows:

Definition isZero (n : NatC) : Prop :=

match n with

| Z => True

| S Z => False

end.

Hopefully the basic pattern is clear: we are taking cases on n, indicated by
match n, and have defined two cases separated by “|”. In the first case, when
n = Z, we evaluate to True (i.e., >); while in the second, when n = S Z, we
evaluate to False (⊥). We finish the case analysis with the keyword end.

The match...end construction is quite powerful and we will in no way cover
all of what it can do. Instead, we will focus on the simpler use cases. . . and what
can go wrong. In fact, the code above results in the following error:

Error: Non exhaustive pattern-matching:

no clause found for pattern S (S _)

9From here on, we will write Nat to mean the inductively defined set from the rules Znat

and Snat—that is, Nat = NatC.
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Coq is complaining that the match is not covering all of the cases. Coq is right:
our definition of isZero evaluates correctly on Z and S(Z), but is undefined on
other input such as S(S(Z)). Coq insists (and it is a good idea in general) that
every function is total—that is, a function must be defined on every input10.

With this in mind, we try the following definition:

isZero(n) ≡

{

> when n = Z

⊥ when n = S(n′)

We again break n into cases, but this time our second case covers more choices.
In fact, by invertibility, we know that this breakdown covers all the possibilities.
It is simple to code this definition in Coq; this time there are no complaints.

Definition isZero (n : NatC) : Prop :=

match n with

| Z => True

| S n’ => False

end.

No complaints, but there are a few subtle things going on here. First of all, n’
is introduced as a variable binding; that means that the second case (False) is
able to use n’ if it wants to. Here is an example of using that power:

Definition isOne (n : NatC) : Prop :=

match n with

| Z => False

| S n’ => isZero n’

end.

Here we define a function that returns False on zero (Z) and when passed some
S(n’) returns isZero(n’). When n’ is Z (i.e., n = S Z), then the result is
True; otherwise (i.e., when n = S (S n’’) for some n’’) the result is False.
The result is a function that is True on S Z and False otherwise. Here is the
same function written using the mathematical notation:

isOne(n) ≡

{

⊥ when n = Z

isZero(n′) when n = S(n′)

The way variables are bound can be a little tricky. Consider:

Definition isOne’ (n : NatC) : Prop :=

match n with

| Z => False

| S n’ => isZero n

end.

10In a setting like ours where we require that functions be total, it is straightforward to
model a partial function—a function that does not need to evaluate to a result on every
input—from total functions: just evaluate all of the undefined inputs to some special-purpose
object indicating that the function does not cover this input.
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The code for isOne’ is almost the same as the code for isOne above. The
difference is in the second case; here, we use isZero n instead of isZero n’.
The result is a function that is always False. Another very similar example is:

Definition isOne’’ (n : NatC) : Prop :=

match n with

| Z => False

| S n => isZero n

end.

The difference here is again in the second case. Instead of binding the new
variable to a fresh variable such as n’, here we reuse the variable n. Just like
with quantifiers, variables in patterns bind to the closest binding. In other
words, isOne’’ behaves like isOne, and not like isOne’.

There are other wrinkles to case analysis; one of these is the notion of wild-
cards, inspired from the following alternative definition of isZero:

isZero(n) ≡

{

> when n = Z

⊥ otherwise

Since the isZero function does not use the n′ in the second case, we can write
“otherwise” rather than “n = S(n′)”. Coq generalizes this idea as follows:

Definition isZero (n : NatC) : Prop :=

match n with

| Z => True

| S _ => False

end.

The wildcard “ ” tells Coq that this case should be used regardless of what is
in this spot (such as Z or S Z or n); no variable names are introduced. Cases
are evaluated top to bottom: the first pattern, then the second, etc. until Coq
has found a match. Therefore, the following code has exactly the same effect:

Definition isZero (n : NatC) : Prop :=

match n with

| Z => True

| _ => False

end.

Here the “ ” will match anything—it is the way to say, “otherwise”. Since the
only case left is S n’, the result is identical. Not identical is the following:

Definition isZero (n : NatC) : Prop :=

match n with

| _ => False

| Z => True

end.
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The problem here is that it is impossible to reach the second case since the
initial case matches Z and everything else! Thus Coq rejects the definition:

Error: This clause is redundant.

There is one final thing to be aware of when using match. Consider the
following reasonable pair of definitions for defining the isTwo predicate:

two ≡ S(S(Z))

isTwo(n) ≡

{

> when n = two

⊥ otherwise

Here’s a reasonable attempt to code this in Coq:

Definition two : NatC := S (S Z).

Definition isTwo (n : NatC) : Prop :=

match n with

| two => True

| _ => False

end.

Unfortunately, Coq returns a somewhat mysterious error message:

Error: This clause is redundant.

What is going on? It turns out that Coq is interpreting two as a fresh variable
name instead of as a possible pattern to match. Therefore, the first clause
matches all of the cases—that is, in the first case, the fresh variable two can be
Z or S Z or anything else—leaving nothing for the second case, which is therefore
redundant. It turns out that Coq requires that the pattern only include the
generators (constructors) defined when the inductive type was created—in this
case, Z and S. Given this, one way to write the isTwo function is as follows:

Definition isTwo (n : NatC) : Prop :=

match n with

| S (S Z) => True

| _ => False

end.

This works just fine, and the wildcard in the second case matches everything
except S (S Z). You might wonder why Coq does not allow for more general
pattern matching. There are several technical reasons. Two of the simpler are
the desire to check for missing cases and redundancy when the definition is
written (as opposed to when it is used); and that Coq requires that there be a
computable test for which case is taken. In general, equality is not computable
(if I give you two functions f and g from NatC to NatC, it might take an infinite
amount of time to determine if they are equal).

In the case of the isTwo function, however, we can use a neat trick. We take
advantage of the fact that the result of the isTwo function is Prop, which also
happens to be the type of equality facts. Thus we can write:
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Definition isTwo (n : NatC) : Prop :=

match n with

| n’ => n’ = two

end.

In this case, the match is so simple that our trick does not buy us much; in fact,
the above code is equivalent to the following much more obvious definition:

Definition isTwo (n : NatC) : Prop :=

n = two.

Still, in general it is useful to remember that if your result is Prop you can test
for equality on the right-hand side of the pattern in addition to the left.

2.1 Fixpoints

We now understand the details of defining a function by cases. Let us use our
newfound understanding to investigate recursive functions, such as the following:

isEven(n) ≡











> when n = Z

⊥ when n = S(Z)

isEven(n′) when n = S(S(n′))

We first observe that this function is total because all of the cases are covered.
The tricky issue is that there is a recursive call in the function; is this sound?
Here it depends again on what what we want our functions to be. In mathe-
matics it is common to define functions as subsets of the cross product of the
domain and codomain (range) with certain properties. In computer science,
we very often want much stronger properties. By default, Coq requires that
functions be both computable and terminating11. Unrestricted recursion makes
it easy to define nonterminating functions, so Coq makes recursive functions a
little trickier to define. Here is our first natural-looking attempt:

Definition isEven (n : NatC) : Prop :=

match n with

| Z => True

| S Z => False

| S (S n’) => isEven n’

end.

Unfortunately, Coq rejects this code, and complains as follows:

Error: The reference isEven

was not found in the current environment.

In other words, the keyword Definition does not let us use the object we are
defining recursively. Instead, we need a related keyword, Fixpoint, as follows:

11It is possible to define uncomputable functions, for example by enabling axioms such as
description or unrestricted choice—but the additional power comes at a price.
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Fixpoint isEven (n : NatC) {struct n} : Prop :=

match n with

| Z => True

| S Z => False

| S (S n’) => isEven n’

end.

This definition works. The unexpected item is the {struct n}. What is this
for? It tells Coq that the principal argument of isEven is n. The principal
argument is used to verify that the recursion will terminate. The reason is that
since objects in inductively defined sets have a finite construction, as long as we
restrict ourselves to only recursing on subparts of our original expression, then
we know we will eventually reach a base case, when we will terminate12.

When defining a recursive function, Coq always needs to know what the
principal argument is so that it can verify that the function terminates. Fortu-
nately, Coq is pretty good at guessing; in fact in most cases we can leave the
{struct ...} out. In the example we gave above, Coq is able to examine the
structure of this function and determine that n is the principal argument (ok, in
this case it was easy since there was only one argument). When the user adds
the recursive definition, Coq can then respond:

isEven is recursively defined (decreasing on 1st argument)

The 1st argument being n. What happens if we try a nonterminating function?

Fixpoint unguarded (n : NatC) : Prop :=

unguarded n.

Coq rejects this definition with the following error message:

Error: Recursive definition of unguarded is ill-formed.

In environment unguarded : NatC -> Prop n : NatC

Recursive call to unguarded has principal argument

equal to "n" instead of a subterm of n.

A second example: map. If you are familiar with a functional programming
language (Lisp, Scheme, ML, Haskell, etc.) then you are probably familiar with
a function called map, defined on polymorphic lists. Here is the definition:

map(A,B)(f : A → B, L : list(A)) : list(B)

≡

{

nilB when L = nilA

f(a) ::B map(A,B)(f, L
′) when L = a ::A L′

We put in the types of the arguments f and L, as well as the type of the result
of map (i.e., list(B)). We also added the explicit type operators on the list

12Note that we do not require that the subpart be direct subpart: that is, we can recurse on
n’ although it is only an indirect subpart (i.e., a subpart of a subpart) of n. Coq also allows
the definition of recursive functions with more sophisticated termination arguments. If you
like, investigate the Program keyword in the user manual for detail.
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constructors nil and “::”. The map function takes a list L of As and a function
f from A to B and uses f to transform L into a list of Bs. Of course, very
often A = B, but even so f can be very useful. For example, here we use map
to increment (i.e., apply the generator/function S to) every nat in a list13:

map(S, Z :: S(Z) :: Z :: nil) = S(Z) :: S(S(Z)) :: S(Z) :: nil

Let us take a look at the code for this function in Coq:

Fixpoint map (A B : Type) (f : A -> B) (L: list A) : list B :=

match L with

| nil => nil

| a :: L’ => (f a) :: map A B f L’

end.

Observe that map terminates since the recursive call occurs on L’, which is the
tail (back part) of the initial list L. Indeed, Coq reports that:

map is recursively defined (decreasing on 4th argument)

Of course, we want Coq to guess the type arguments A and B:

Implicit Arguments map [A B].

Exercise 7. Define (paper and Coq) an addition function on naturals.

Exercise 8. Define (paper and Coq) a function that doubles all of the leaves
in a tree. For example, this function should behave as follows:

double(•) = • •
double(• •) =

• • • •
double(

• • •
) =

• •
• • • •

2.2 Cofixpoints

Both inductive and coinductive types have constructors/generators (e.g., for
nat, the constructors are Z and S), which are ways to introduce objects of the
type. Both inductive and coinductive types are invertible, which means that
case analysis as covered in section 2 can eliminate (use) objects of the type.
We have already seen several examples of case analysis on inductive types; let
us first examine a case analysis on a coinductive type. Recall the definition of
stream given by the coinductive interpretation of the following rule:

n : nat s : stream
n @ s : stream

Strm

13Here we will once again revert to hiding the type arguments to avoid clutter.
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It is quite natural to define a function head : stream → nat that returns the
natural at the head of the stream as follows:

head(s) ≡
{

n when s = n @ s′

This is straightforward. Here is the (previously presented) Coq defining streams:

CoInductive NatStream : Type :=

NS : NatC -> NatStream -> NatStream.

Defining the function to get the head of a stream is equally straightforward:

Definition head (ns : NatStream) : NatC :=

match ns with

| Strm n _ => n

end.

So far inductive and coinductive types seem similar: both use generators
for introduction and case analysis for elimination. However, as we have seen,
inductive types also have a more powerful kind of elimination rule: fixpoints. A
fixpoint is able to eliminate (use) a complete inductive object, instead of just
a single layer of a complete object like case analysis does. Unfortunately, we
cannot use fixpoints to eliminate coinductive types since the existence of infinite
objects means that our functions might not terminate.

Instead of fixpoints, coinductive types are associated with cofixpoints. Cofix-
points introduce (build) coinductive types. Thus, inductive types get a more
powerful elimination technique (fixpoints), while coinductive types get a more
powerful introduction technique (cofixpoints). The lack of a powerful elimina-
tion technique poses a serious challenge for those interested in using coinductive
types. Indeed, coinductive types are a little like hell: easy to get in to, but hard
to escape. Still, from time to time they come in handy.

Let us see an example of a cofixpoint in action. Recall that we wanted to
define the constant stream generated by Z, which looks something like this:

SconstZ ≡ Z @ Z @ Z @ . . .

A cofixpoint is just what we need; we simply write:

SconstZ ≡ Z @ SconstZ

This looks like a very bad idea since it appears to contain unguarded recursion;
recall that for fixpoints, we were only allowed to make a recursive call on sub-
parts of our input. For a cofixpoint, we also have a guard, but it is in some
sense the opposite: we are only allowed to recurse after we have been “wrapped”
in a coinductive generator, in the case of SconstZ, the recursive call occurs in the
context of the stream constructor “@”. Thus, the result of a cofixpoint must
be a coinductive type14. Here is the Coq code defining this constant stream:

14If you are familiar with lazy functional languages like Haskell, you are probably aware of
computation on demand. The idea here is similar: here we have generation on demand; the
corecursive function is able to generate as many elements of the stream as required.

16



CoFixpoint SconstZ : NatStream :=

Strm Z ScontZ.

Coq responds with:

SconstZ is corecursively defined

If the recursive call does not occur in the context of a coinductive constructor,
Coq will reject the definition just like an unguarded recursive call in a fixpoint.

Cofixpoints can also take arguments like normal functions. We also wanted
to define the increasing stream starting from Z, SincZ : stream:

SincZ ≡ Z @ S(Z) @ S(S(Z)) @ . . .

We break the definition into two parts. First we will define a generalized core-
cursive function that generates an increasing stream from some starting value:

incStream(n) ≡ n @ incStream(S(n))

Now it is easy to define the increasing stream that starts from Z:

SincZ ≡ incStream(Z)

Finally, here is the Coq code for these definitions:

CoFixpoint incStream (n : NatC) : NatStream :=

Strm n (incStream (S n)).

Definition SincZ : NatStream :=

incStream Z.

Exercise 9. Define (on paper and in Coq) the infinite element ω in the coin-
ductive interpretation of the natural numbers (rules Znat and Snat).

3 Proof techniques for recursive types

We have seen how to recursively define sets, and how to define recursive functions
over such sets. What remains is to learn the proof techniques for reasoning about
recursively defined sets. These techniques are analogous to the elimination
techniques available—defining functions by cases and defining fixpoints.

3.1 Case analysis

Properties of both inductive and coinductive types can be proved by a technique
called case analysis. Suppose we define a function called dec that decrements a
natural number (with the convention that dec(0) = 0)15.

dec(n) ≡

{

Z when n = Z

n′ when n = S(n′)

15To cut down on clutter, we will start using the arabic numerals to indicate naturals; 0 = Z,
1 = S(Z), 2 = S(S(Z)), etc. In addition, we assume standard arithmetical facts like 1 > 0.
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Let us prove that if n is nonzero, then n is the successor of its decrement, i.e.,

∀n
(

(n 6= 0) ⇒ (n = S(dec(n)))
)

To prove this by case analysis, we must show that it is true when n = Z and
also when n = S(n′). We begin by clearly stating the technique we will use:

Proof. By case analysis on the structure of n.

Next, we break out each individual case, and prove the goal, as follows:

1. (n = Z). Here the goal reduces to:

0 6= 0 ⇒ (0 = S(dec(n)))

Fortunately, since the premise of the implication is false, this is very easy.

2. (n = S(n′)). Here the goal reduces to:

S(n′) 6= 0 ⇒ (S(n′) = S(dec(S(n′))))

Of course here the premise is true, so we need to prove the conclusion.
Unfolding the definition of dec yields:

S(n′) 6= 0 ⇒ (S(n′) = S(

{

Z when S(n′) = Z

n′′ when S(n′) = S(n′′)
))

Which is just the same as

S(n′) 6= 0 ⇒ (S(n′) = S(n′))

The conclusion is true by reflexivity, so we are done with case 2.

Thus by case analysis we have proved our goal.

Observation. We can use case analysis on any invertible set; dec is well-
defined even if the naturals had been coinductively defined instead of inductively
defined, and in that case our proof would have worked exactly the same way.

3.2 Case analysis in Coq.

Doing case analysis in Coq is pretty straightforward; the most common tactic
used is destruct. Let us see an example. Here is the code for decrement:

Definition dec (n : NatC) : NatC :=

match n with

| Z => Z

| S n’ => n’

end.

18



We now state our desired theorem:

Lemma Sdec: forall n,

n <> Z -> n = S(dec n).

After the usual “Proof. intros.”, Coq shows the following proof state:

1 subgoal

n : NatC

H : n <> Z

______________________________________(1/1)

n = S (dec n)

We tell Coq to prove the goal by case analysis on n by typing “destruct n.”:

2 subgoals

H : Z <> Z

______________________________________(1/2)

Z = S (dec Z)

______________________________________(2/2)

S n = S (dec (S n))

The first goal corresponds to the case when n=Z and is easy sice we have a
hypothesis that Z <> Z; we use “contradiction H. trivial.”. The second
goal corresponds to the case when n=S n0. However, Coq does some on-the-fly
variable renaming that can be a bit confusing:

1 subgoal

n : NatC

H : S n <> Z

______________________________________(1/1)

S n = S (dec (S n))

You might have instead expected to see something more along the lines of:

1 subgoal

n0 : NatC

H : S n0 <> Z

______________________________________(1/1)

S n0 = S (dec (S n0))

However, Coq has determined that the old n is no longer needed (since it is just
equal to S(the new n). Therefore, Coq decided (a little confusingly) to use the
same string (“n”) to refer to the new n in the second goal. In any event, the
proof is almost done. We use “simpl. trivial.” to finish, and then:

Proof completed.

Observation. Just as in a paper proof, the same proof script would work if
NatC had been coinductively defined instead of inductively defined.
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3.3 Induction

Just as inductively defined types have a more powerful elimination form called
fixpoints, they also come come with a more powerful proof technique called
structural induction. In a very important sense, structural induction is defining
a fixpoint in a proof. The technique of structural induction is among the most
important in mathematics. We illustrate the technique with some examples.

Example 5. Recall the inductive definition of trees:

Tree = • |
Tree Tree

Define the fixpoint leaves : Tree → nat that counts the leaves of a tree:

leaves(t) ≡

{

1 when t = •
leaves(tl) + leaves(tr) when t =

tl tr

Define a second fixpoint nodes : Tree → nat that counts the nodes of a tree:

nodes(t) ≡

{

0 when t = •
1 + nodes(tl) + nodes(tr) when t =

tl tr

We want to prove that for any tree t, the number of leaves in t is greater than
the number of nodes in t. That is,

∀t
(

leaves(t) > nodes(t)
)

The key to doing a good induction proof is to write out all of the steps and
avoid shortcuts. Doing it right takes time, but at the end you know that you
have a dependable result. Start out with a clear statement of your goal (the
previous equation) and the technique you would like to apply.

Proof. By induction on the structure of the tree t.

Next, clearly state your induction hypothesis. You hypothesis must be a
predicate (function to truth values) on the variable you are inducting over and
should be equal to your goal if that variable is universally quantified over; i.e.,

IH(t) ≡ leaves(t) > nodes(t)

Now you need to take cases on the variable you are inducting over. State each
case clearly, showing what t is on this case and what the induction hypothesis
is on any subparts. The point of induction is that you can use the induction
hypothesis on the subparts to build the proof on the combined object. In each
case, you need to prove IH(t) at the end16. If you do so, then induction lets you
conclude that the induction hypothesis holds for all variables, that is,

∀t IH(t)

16For induction proofs, we do not require a three-column proof such as we use in natural
deduction; however, you may choose to do one if you find it a useful format.
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With this in mind, we do the cases for this proof as follows:

1. (t = •). Since • has no subparts, we do not have any induction hypothesis.
Our goal is to prove IH(•), that is, leaves(•) > nodes(•). This is direct
since leaves(•) = 1 and nodes(•) = 0 and 1 > 0. We are done with case 1.

2. (t =
tl tr

). We can assume IH on the subparts of t; that is, we can assume

IH(tl) and IH(tr). Our goal is to prove IH(t); that is, leaves(t) ≥ nodes(t).
Since t =

tl tr
, this reduces to:

leaves(
tl tr

) > nodes(
tl tr

)

Unfolding the definitions of leaves and nodes leads to the following:

leaves(tl) + leaves(tr) > 1 + nodes(tl) + nodes(tr)

Our induction hypotheses are:

leaves(tl) > nodes(tl) and leaves(tr) > nodes(tr)

This is equivalent to:

leaves(tl) ≥ 1 + nodes(tl) and leaves(tr) ≥ 1 + nodes(tr)

Combining the above, we know that

leaves(tl) + leaves(tr) ≥ 2 + nodes(tl) + nodes(tr)

This directly implies that

leaves(tl) + leaves(tr) > 1 + nodes(tl) + nodes(tr)

And so we are done with case 2.

At the end of the proof, it is important to restate that you have finished all
of the cases by saying, “thus, by structural induction we have shown that”

∀t
(

leaves(t) > nodes(t)
)

Example 6. Let us consider a second example. We define a function called
size : Tree → nat that counts the total number of leaves and nodes in a tree:

size(t) ≡

{

1 when t = •
1 + size(tl) + size(tr) when t =

tl tr

We want to prove the size of a tree is equal to the number of leaves plus nodes:

∀t
(

size(t) = leaves(t) + nodes(t)
)
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Proof. By induction on the structure of t. We use

IH(t) ≡ size(t) = leaves(t) + nodes(t)

1. (t = •). This case is easy by a series of equalities:

size(•) = 1
= leaves(•)
= leaves(•) + 0
= leaves(•) + nodes(•)

By transitivity of equality, we are done with case 1.

2. (t =
tl tr

). Our induction hypotheses are

size(tl) = leaves(tl)+nodes(tl) and size(tr) = leaves(tr)+nodes(tr)

Given these hypotheses, we again use a series of equalities to prove IH(t):

size(
tl tr

) = 1 + size(tl) + size(tr)

= 1 + leaves(tl) + nodes(tl) + leaves(tr) + nodes(tr)

=
(

1 + nodes(tl) + nodes(tr)
)

+
(

leaves(tl) + leaves(tr)
)

= nodes(
tl tr

) + leaves(
tl tr

)

We are therefore done with case 2.

So by structural induction we have proved that

∀t
(

size(t) = leaves(t) + nodes(t)
)

Exercise 10. Recall the double function you defined for exercise 8. Prove

∀t
(

leaves(double(t)) = leaves(t) + leaves(t)
)

Exercise 11. Recall from example 4 above that we coinductively define stream
from the rule Strm. Suppose we try to define stream inductively rather than
coinductively. Prove that in that case, stream is empty; that is,

¬∃s : stream(>)

Note that this is (deMorgan-) equivalent to:

∀s : stream(⊥)

If you set this up correctly, the proof should be very short.

3.4 Induction in Coq.

After all of the effort required to properly set up an induction proof on paper,
you may be quite happy to learn that doing induction in the theorem prover is
often quite easy. To illustrate, we will redo our previous two examples in Coq.
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Example 5 in Coq. Recall from example 1 our Coq definition for trees:

Inductive Tree : Type :=

| Leaf : Tree

| Node : Tree -> Tree -> Tree.

It is quite straightforward to define the leaves and nodes fixpoints; in fact they
are almost a direct translation from the paper definitions:

Fixpoint leaves(t : Tree) : nat :=

match t with

| Leaf => 1

| Node tl tr => leaves tl + leaves tr

end.

Fixpoint nodes(t : Tree) : nat :=

match t with

| Leaf => 0

| Node tl tr => 1 + nodes tl + nodes tr

end.

One point that is worth making is that the result type is nat, the built-in type
for naturals in Coq. Actually, except for the name of the base generator (it
uses O for Z), it is exactly the same as our NatC. However, by using it we have
access to the large number of pre-existing definitions, lemmas, and tactics for
reasoning about natural numbers. In particular, we will be using a tactic called
omega, which makes short work of arithmetical goals. To use omega, we need to
first include the library where it is defined by including this line in our file:

Require Import Omega.

It is quite simple to state the goal for our lemma; notice we use the symbol “>”
for greater than; this is predefined on type nat.

Lemma leaves_gt_nodes: forall t,

leaves t > nodes t.

Proof.

Coq now reports one goal, looking like this:

1 subgoal

______________________________________(1/1)

forall t : Tree, leaves t > nodes t

We would like to solve this goal by induction on the structure of t; the Coq
tactic to begin is logically enough just “induction t.”. We now have two goals:

2 subgoals

______________________________________(1/2)

leaves Leaf > nodes Leaf

______________________________________(2/2)

leaves (Node t1 t2) > nodes (Node t1 t2)
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Each goal corresponds to one of the cases in the induction. The first one is quite
easy; we just do “simpl.”, which transforms the goal into “1>0”. Now we have
a pure arithmetical fact, and can take advantage of “omega.” to solve the first
goal. Now we must solve the second goal, which looks like this:

1 subgoal

t1 : Tree

t2 : Tree

IHt1 : leaves t1 > nodes t1

IHt2 : leaves t2 > nodes t2

______________________________________(1/1)

leaves (Node t1 t2) > nodes (Node t1 t2)

We simplify the leaves and nodes functions with “simpl.”, and then we have:

1 subgoal

t1 : Tree

t2 : Tree

IHt1 : leaves t1 > nodes t1

IHt2 : leaves t2 > nodes t2

______________________________________(1/1)

leaves t1 + leaves t2 > S (nodes t1 + nodes t2)

This looks good, but doing all the steps is a pain. Instead, we say, “omega.”.

Proof completed.

The proof script is only five lines long. Pretty good, eh?

Example 6 in Coq. Since it is not a lot of work, we also redo example six:

Fixpoint size(t : Tree) : nat :=

match t with

| Leaf => 1

| Node tl tr => 1 + size tl + size tr

end.

The size function is very simple to define, and writing our goal is also easy:

Lemma size_eq_leavesnodes: forall t,

size t = leaves t + nodes t.

The proof script is only five lines (ok, not counting Proof. and Qed.).

Proof.

induction t.

simpl.

trivial.

simpl.

omega.

Qed.
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Doing inductions in Coq is usually easier than doing them formally on paper.
It does take some practice—and you do not get to “fudge it” when the details
do not quite work out as you expected—but even so, it’s usually a huge win.

Exercise 12. Redo exercise 10 in Coq.

Exercise 13. Redo exercise 11 in Coq. The proof script should be quite short.

3.5 Strengthening the induction hypothesis

Induction is something that seems quite simple, but in fact induction is one of
the most complicated and error-prone mathematical techniques to master. Let
us take a look at a slightly more complicated example.

Example 7. It is vital that you follow all of the steps. Let us consider a
problem closely related to example 5. We want to prove that

∀t
(

leaves(t) ≥ nodes(t)
)

Of course, this follows directly from the fact that we have proven example 5
(∀x∀y (x > y ⇒ x ≥ y)), but let us instead try to prove it directly.

Proof. By induction on the structure of the tree t. We use

IH(t) ≡ leaves(t) ≥ nodes(t)

1. (t = •). Since • has no subparts, we do not have any induction hypothesis.
Our goal is to prove IH(•), that is, leaves(•) ≥ nodes(•). This is direct
since leaves(•) = 1 and nodes(•) = 0 and 1 ≥ 0. We are done with case 1.

2. (t =
tl tr

). We can assume IH on the subparts of t; that is, we can assume

IH(tl) and IH(tr). Our goal is to prove IH(t); that is, leaves(t) ≥ nodes(t).
Since t =

tl tr
, this reduces to:

leaves(
tl tr

) ≥ nodes(
tl tr

)

Unfolding the definitions of leaves and nodes leads to the following:

leaves(tl) + leaves(tr) ≥ 1 + nodes(tl) + nodes(tr)

So far, everything has worked much like before. Unfortunately, now our
induction hypotheses are different in a very inconvenient way:

leaves(tl) ≥ nodes(tl) and leaves(tr) ≥ nodes(tr)

Unfortunately, these facts do not imply

leaves(tl) + leaves(tr) ≥ 1 + nodes(tl) + nodes(tr)
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Because of the “1+” and the difference between “≥” and “>”. Assuming
our induction hypothesis on the subparts of t was not strong enough to
prove the induction hypothesis on t itself. Our proof is broken.

When an induction proof fails like this, your best bet is to strengthen the

induction hypothesis. That is, you are trying to prove something of the form:

∀x IH(x)

You find some alternative induction hypothesis IH′ such that

∀x
(

IH′(x) ⇒ IH(x)
)

Therefore, proving ∀x IH′(x) will directly let you prove the related ∀x IH(x).
For example 7, we can use the induction hypothesis from example 5 for IH′.

When you try to prove ∀x IH′(x) by induction on the structure of x, you will
discover that some parts of the proof are easier and some are harder. The harder
part is that you have to prove a more difficult goal; examining the above two
examples, in example 5 (successful), we had to prove a strict inequality (x >

y); in example 7 (unsuccessful), we only had to only prove a loose inequality
(x ≥ y). Of course, a strict inequality is harder to prove than a loose one, all
things equal, since when x = y you can prove x ≥ y but not x > y.

Fortunately, not everything is equal when we strengthen the induction hy-
pothesis. In particular, on the inductive branches (in examples 5 & 7, the second
case) we get to use a more powerful induction hypothesis. Thus, in example 5
(successful), we were given strict inequalities as hypotheses, whereas in example
7 (unsuccessful), we were only given loose inequalities. As a premise, a strict
inequality is better than a weak one since from x > y you can rule out the case
when x = y, which you cannot do from the weaker x ≥ y.

The real question is, does the trade-off of harder goals for stronger induction
hypotheses work out or not? In the case of example 7, it is clear that it does
work out. However, in general it can be very hard to tell without doing the
proof. In fact, finding a stronger induction hypothesis that strikes the right
balance is one of the hardest things to do when trying to prove something.

Coq tactics for weakening. Notice from the above Coq examples how Coq
used the goal to determine the induction hypothesis. In fact, the way that
Coq chooses induction hypothesis is as follows: First it puts everything directly
containing the variable you are inducting over under the bar, much like the
revert tactic. Second, it uses the goal as the induction hypothesis and sets up
the cases. If you do not get the induction hypothesis you were hoping to get
(that is, you need a stronger hypothesis), you need to manipulate the goal until
it has the right shape before using the induction tactic. Useful tactics for this
process are revert, generalize, clear, assert, and others.

Quantifiers. One of the most common problems when doing an induction is
that some quantified variables are not properly accounted for. Suppose you are
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trying to prove a goal along the lines of the following:

∀x ∀y
(

R(x) ⇒ P (x, y)
)

Now, if you are doing induction on y, you have two separate choices for what
to do induction on. Choice one is:

x,R(x) ` IH(y) = P (x, y)

By “y,R(y)” to the left of the “`”, I mean that x and R(x) have already been
been introduced via universal introduction and implication introduction, before
setting up the induction. This is in fact exactly what you will get if you
start a Coq proof for the goal using “intros. induction y.”, or even just
“induction y.”, which will do the “intros until y.” for you. In fact, it
will work fine—as long as x does not need to change values during the course
of the proof. If it does, though, then you are out of luck with that induction
hypothesis, and you need to strengthen it to:

IH(y) = ∀x
(

R(x) ⇒ P (x, y)
)

Of course, this hypothesis is much stronger since it is usable for any x you
want, instead of one particular x. When you write your induction hypotheses
on paper, be very careful to make sure you are putting the quantifiers in the
right places. Incidentally, the way to transform the goal into the form where you
get this induction hypothesis is “intros x y. revert x. induction y.”.
Another way, which works quite well and is more general, is to use an assert.
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