Resolution and Logic Programming

- ★ Ground resolution
- ★ Unification and occur check
- ★ General Resolution
- ★ Logic Programming
- ★ SLD-resolution
- ★ The programming language Prolog
 - ⇒ Syntax
 - ⇒ Arithmetic
 - ⇒ Lists

Slide 1

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Motivation (1)

- We want to show $\Phi \models \Psi$, for two propositional formulas Φ, Ψ .
- Assume Φ is $\Phi_1 \wedge \cdots \wedge \Phi_n$, in CNF, and Ψ is $L_1 \wedge \cdots \wedge L_m$, a conjunction of literals.
- Showing $\Phi \models \Psi$ is equivalent with showing that the set of formulas $\{\Phi_1, \dots, \Phi_n, \neg \Psi\}$ is unsatisfiable.
- *Resolution:* a procedure $\text{Res}(\chi_1, \chi_2)$ applied to two formulas, and returning a (simpler) formula χ , such that, if $\{\chi_1, \chi_2, \chi\}$ is unsatisfiable, then so is $\{\chi_1, \chi_2\}$.

Slide 2

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Motivation (2)

• We hope to produce the iteration

$$\begin{split} &\{\Phi_1,\ldots,\Phi_n,\neg\Psi\}\\ &\{\Phi_1,\ldots,\Phi_n,\neg\Psi,\mathbf{Res}(\neg\Psi,\Phi_{k_1})=\chi_1\}\\ &\{\Phi_1,\ldots,\Phi_n,\neg\Psi,\chi_1,\mathbf{Res}(\chi_1,\Phi_{k_2})=\chi_2\}\\ &\cdots\\ &\{\Phi_1,\ldots,\Phi_n,\neg\Psi,\chi_1,\ldots\chi_{l-1},\mathbf{Res}(\chi_{l-1},\Phi_{k_l})=\bot\} & \text{—unsatisfiable} \end{split}$$
 where $1\leq k_i\leq n, 1\leq i\leq l.$

- According to the property on the previous slide, if the last set is unsatisfiable, then so is the first set.
- A procedure showing that a set of formulas is unsatisfiable is called a refutation procedure.

Slide 3

CS3234 — Logic and Formal Systems — Lecture 06 — 09/09/04

CNF and Clausal Form (1)

- Given the CNF propositional formula $\Phi \equiv \Phi_1 \wedge \Phi_n$, where Φ_i are disjuncts, $1 \le i \le n$
- For each i, $1 \le i \le n$, $\Phi_i \equiv \neg p_{i1} \lor \neg p_{i2} \lor \cdots \lor \neg p_{ik_i} \lor q_{i1} \lor \cdots \lor q_{il_i}$
- Φ_i is equivalent to $p_{i1} \wedge \cdots \wedge p_{ik_i} \rightarrow q_{i1} \vee \cdots \vee q_{il_i}$ which we call *a clause*.
- We represent the clause by $p_{i1}, \dots, p_{ik_i} \rightarrow q_{i1}, \dots, q_{il_i}$
- ullet We represent Φ as the set of clauses

$$\{(p_{i1},\ldots,p_{ik_i}\to q_{i1},\ldots,q_{il_i}),\ldots,()|1\leq i\leq n\}$$

which we call the *clausal form* of Φ .

Slide 4

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

CNF and Clausal Form (2)

$$\neg (p_1 \land \dots \land p_k)$$
 can be written as $p_1 \land \dots \land p_k \to \top$, or as $p_1, \dots, p_k \to$

$$q_1 \lor \cdots \lor q_l$$
 can be written as $\bot \to q_1, \dots, q_l$, or as $\to q_1, \dots, q_l$

- \perp can be written as $\perp \rightarrow \top$, and is denoted by
- □ (empty clause).

Ground Resolution

Given two clauses

$$\chi_1: p_1, ..., p_k, ..., p_{m_1} \to q_1, ..., q_{n_1}$$

 $\chi_2: r_1, ..., r_{m_2} \to s_1, ..., s_l, ..., s_{n_2}$

If p_k and s_l are the same propositional symbol, then $\text{Res}(\chi_1,\chi_2)$ is

 $p_1,\ldots,p_{k-1},p_{k+1},\ldots,p_{m_1}r_1,\ldots,r_{m_2}\to q_1,\ldots,q_{n_1},s_1,\ldots,s_{l-1},s_{l+1},\ldots,s_{n_2}$

This is similar to the following cancelling rule in arithmetic.

$$a+b = c$$

$$c = d+e$$

$$a+b+\phi = \phi + d+e$$

Slide 5

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Slide6

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Ground Resolution Example

Alternatively

```
\begin{array}{lll} \chi_1 = \operatorname{Res}(\Phi_1, \Phi_2) & \text{is} & q \to r \\ \chi_2 = \operatorname{Res}(\chi_1, \Phi_3) & \text{is} & \to r \\ \chi_3 = \operatorname{Res}(\chi_2, \Psi) & \text{is} & \Box \end{array}
```

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Predicate Logic Clauses

A predicate logic clause:

$$p(x,y), q(f(x),z) \rightarrow r(y,z,w), s(g(z),w)$$

Meaning:

$$\forall x \forall y \forall z \exists w (p(x,y) \land q(f(x),z) \rightarrow r(y,z,w) \lor s(g(z),w))$$

- First order clauses are a subset of predicate logic: not all predicate logic formulas can be expressed as clauses.
- They are more general than a Turing machine: can specify all possible computations.

Slide8

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Non-Ground Resolution

Consider the following first order clauses.

$$\chi_1: A_1, \dots, A_k, \dots, A_{m_1} \to B_1, \dots, B_{n_1}$$

 $\chi_2: C_1, \dots, C_{m_2} \to D_1, \dots, D_l, \dots, D_{n_2}$

where the As, Bs, Cs, and Ds are first order atoms. Assume there exists a substitution θ such that $A_k\theta = D_I\theta$. We call θ a *unifier*. Then $\mathbf{Res}(\chi_1\theta,\chi_2\theta)$ is

$$A_1\theta, \dots, A_{k-1}\theta, A_{k+1}\theta, \dots, A_{m_1}\theta, C_1\theta, \dots, C_{n_1}\theta \to B_1\theta, \dots, B_{m_2}\theta, D_1\theta, \dots, D_{l-1}\theta, D_{l+1}\theta, \dots, D_{n_2}\theta$$

which is the same as

$$(A_1,...,A_{k-1},A_{k+1},...,A_{m_1},C_1,...,C_{n_1} \rightarrow B_1,...,B_{m_2},D_1,...,D_{l-1},D_{l+1},...,D_{n_2})\theta$$

Slide 9

CS3234 — Logic and Formal Systems — Lecture 06 — 09/09/04

Non-Ground Resolution Example

 $\chi_1: p(x,y) \rightarrow q(y,z)$

 χ_2 : $q(f(w), v) \rightarrow r(v)$

 θ : [f(w)/y, z/v]

 $\chi_1 \theta : p(x, f(w)) \rightarrow q(f(w), z)$

 $\chi_2\theta$: $q(f(w),z) \rightarrow r(z)$

Res($\chi_1\theta,\chi_2\theta$) : $p(x,f(w)) \rightarrow r(z)$

Slide 10

Slide 12

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Unification, MGU

Given two atoms, A, B, can we find a unifying substitution θ , such that $A\theta = B\theta$? Answer: YES.

A *most general unifier (mgu)* is a unifying substitution θ such that for every other unifier θ' , there exists a substitution σ such that

$$A\theta' = (A\theta)\sigma$$
$$B\theta' = (A\theta)\sigma$$

Unification Algorithm

The following algorithm computes the mgu of two atoms A and B, or returns "no solution" if no such mgu exists.

- 1. If the predicate symbols of A and B are not identical, return "no solution".
- 2. From $p(t_1,...,t_k) = p(t_1',...,t_k')$ derive the set of equations $\{t_1 = t_1',...,t_k = t_k'\}$.
- 3. Erase all equations of the form x = x, where x is a variable.
- 4. Transform all equations of the form t = x, where t is not a variable, into x = t.
- 5. Let t' = t'' be an equation where t' and t'' are not variables. If the function symbols of t' and t'' are not identical, return "no solution." Otherwise, replace the equation $f(t'_1, \ldots, t'_k) = f(t''_1, \ldots, t''_k)$ by the equations $t'_1 = t''_1, \ldots, t'_k = t''_k$.
- 6. Let x = t be an equation such that x has another occurrence in the set of equations. If t contains x, return "no solution." Otherwise replace all other occurrences of x by t.

Repeat steps 4, 5, and 6 until it is no longer possible. If the "no solution" answer has not been produced yet, all equations are of the form x = t, where t does not contain x. The mgu contains all the bindings t/x, where x = t is an equation in our set.

Slide 11

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Example of Applying the Unification Algorithm

Unify the atoms

p(x, f(x, h(x), y)) and p(g(y), f(g(z), w, z))

First derive the equations:

(1)
$$x = g(y)$$

(2) $f(x,h(x),y) = f(g(z),w,z)$

Apply step 5 and replace (2) by

$$(3) \quad x = g(z)$$

$$(4) \quad h(x) = w$$

$$(5) \quad y = z$$

Apply step 4 and replace (4) by

(6)
$$w = h(x)$$

Slide 13

CS3234 - Logic and Formal Systems - Lecture 05 - 09/09/04

Example (2)

Current set:

 $(1') \quad x = g(y)$

(2')x = g(z)

w = h(x)

(4')

Apply step 6 and use (1') in (2') and

 $(1'') \quad x = g(y)$

g(y) = g(z)w = h(g(y))

Replace (2") by

 $y = z \leftarrow$ already in the set

Use (4") in (1") and (3"). The set

is now: x = g(z)

w = h(g(z))v = 7

Substitution:

[g(z)/x, h(g(z))/w, z/y]

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Example (3)

$$p(x, f(x,h(x),y))[g(z)/x, h(g(z))/w, z/y]$$
 is
 $p(g(z), f(g(z), h(g(z)), z))$

$$p(g(y), f(g(z), w, z))[g(z)/x, h(g(z))/w, z/y]$$
 is
 $p(g(z), f(g(z), h(g(z)), z))$

Slide 15

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Occur Check

Slide 14

Step 6 in the unification algorithm can be very expensive.

Consider unifying

$$p(x_1,x_2,...,x_n,x_0)$$
 and $p(f(x_0,x_0),f(x_1,x_1),...,f(x_n,x_n))$

This produces:

 $x_1 = f(x_0, x_0)$

 $x_2 = f(f(x_0,x_0),f(x_0,x_0))$

 $x_3 = f(f(f(x_0,x_0),f(x_0,x_0)),f(f(x_0,x_0),f(x_0,x_0)))$

 $x_n = \text{term with } 2^n \text{ occurrences of } x_0$

 $x_0 = \text{term with } 2^{n+1} \text{ occurrences of } x_0$

Using step 6, we must return "no solution"; detecting the fact that x_0 occurs in the right hand side of last equation may require exponential time.

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

3.6

General Resolution

Consider the following first order clauses.

$$\chi_1: A_1, \dots, A_k, \dots, A_{m_1} \to B_1, \dots, B_{n_1}$$

 $\chi_2: C_1, \dots, C_{m_2} \to D_1, \dots, D_l, \dots, D_{n_2}$

where the As, Bs, Cs, and Ds are first order atoms. Denote by θ the mgu of A_k and D_l . Then $\operatorname{Res}(\chi_1, \chi_2)$ is

$$(A_1,...,A_{k-1},A_{k+1},...,A_{m_1},C_1,...,C_{n_1} \rightarrow B_1,...,B_{m_2},D_1,...,D_{l-1},D_{l+1},...,D_{n_2})\theta$$

If there exist no two unifiable atoms A_k and D_l , then the resolution rule is undefined.

Resolution procedure: Let S be a set of clauses and define $S_0 = S$. Assume that S_i has been constructed. Choose two clauses $\chi_1, \chi_2 \in S_i$ such that $\operatorname{Res}(\chi_1,\chi_2)$ is defined. If $\operatorname{Res}(\chi_1,\chi_2) = \square$, the original set *S* is unsatisfiable. Otherwise, construct $S_{i+1} = S_i \cup \mathbf{Res}(\chi_1, \chi_2)$. If $S_{i+1} = S_i$ for all possible pairs χ_1 and χ_2 , then S is satisfiable.

Slide 17

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Example of General Resolution

Original set:

Slide 18

1. $p(x) \rightarrow q(x), r(x, f(x))$

5. $r(a,y) \rightarrow t(y)$

6. $t(x), q(x) \rightarrow$ 7. $t(x), s(x) \rightarrow$

3. $\rightarrow t(a)$

2. $p(x) \rightarrow q(x), s(f(x))$

4. $\rightarrow p(a)$

Application of the resolution procedure: 8. $q(a) \rightarrow$

9.

2.4 $\rightarrow q(a), s(f(a))$ [a/x]

10. $\rightarrow s(f(a))$ 8,9

11. $\rightarrow q(a), r(a, f(a))$ [a/x]1,4

12. $\rightarrow r(a, f(a))$ 8,11

13. $\rightarrow t(f(a))$ [f(a)/y]5,12

14. $s(f(a)) \rightarrow$ [f(a)/x]7,13

10,14

CS3234 — Logic and Formal Systems — Lecture 05 — 05/05/04

Soundness and Completeness of Resolution

Soundness: If the unsatisfiable clause \square is derived during the general resolution procedure, then the original set of clauses is unsatisfiable.

Completeness: If a set of clauses is unsatisfiable, then the empty clause \square can be derived by the resolution procedure.

Slide 19

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Logic Programming

From now on, instead of writing clauses as

$$A_1,\ldots,A_m\to B_1,\ldots,B_n$$

we shall prefer to write clauses as

$$B_1,\ldots,B_n\leftarrow A_1,\ldots,A_m$$

For n = 1 we have *Horn clauses*, typically denoted as

$$H \leftarrow A_1, \dots, A_m$$

```
H — the head, A_1, ..., A_m — the body

If n = 0, the clause is a goal.
```

If n = 1 and m = 0 (body is empty), we have a *fact*.

A logic program is a set of Horn clauses.

Slide 2

CS3234 - Logic and Formal Systems - Lecture 05 - 09/09/04

Resolution for Logic Programs

In what follows, we shall introduce restrictions for the resolution procedure that would make it more computationally efficient.

Definition: A *computation rule* is a rule for choosing literals in a goal clause. A *search rule* is a rule for choosing clauses to resolve with the chosen literal in a goal clause.

Typical computation rule: leftmost atom in a goal Γ . Typical search rule: clauses are tried in the order in which they are written.

Slide 21

CS3234 — Logic and Formal Systems — Lecture 06 — 09/09/04

Example of Resolution for Logic Programs

Logic program:

1. $q(x,y) \leftarrow p(x,y)$ 2. $q(x,y) \leftarrow p(x,z), q(z,y)$

3. $p(b,a) \leftarrow$ 4. $p(c,a) \leftarrow$

5. $p(d,b) \leftarrow$ 6. Goal: $\leftarrow q(d,a)$ Applying the resolution procedure, with computation and search rules.

7. $\leftarrow p(d,a)$ [d/x,a/y] 6,1 8. $\leftarrow p(d,z),q(z,a)$ [d/x,a/y] 7,2 9. $\leftarrow q(b,a)$ [b/z] 8,5 10. $\leftarrow p(b,a)$ [b/x,a/y] 9,1 11. \square 10.3

Slide 2

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

The Programming Language Prolog

A Prolog program is, in its most basic form, a set of Horn clauses. Given a goal, the execution of the program and the goal is achieved by applyin the resolution procedure with the following rules:

 $\label{lem:computation} \textbf{Computation rule:} \ \ \text{choose literals from left to right in the goal.}$

Search rule: Choose clauses top-to-bottom as they are written in the program text.

The resolution procedure augmented with these rules is called *SLD-resolution*.

Syntax:

- Predicate and function symbols start with lowercase letters.
- Variables start with uppercase letters or underscore.
- The arrow is represented by the :- operator.
- The dot . acts as a clause separator.

Prolog Example

```
ancestor(X,Y) := parent(X,Y).
ancestor(X, Y) := parent(X, Z), ancestor(Z, Y).
parent (bob, allen).
parent(catherine, allen).
parent (dave, bob).
                                   Goal: ancestor (fred, bob)
parent (ellen, bob) .
                                   Answer: Yes
parent (fred, dave).
parent (harry, george) .
                                   Goal: ancestor (fred, A)
parent (ida, george) .
                                   Answer: A=dave
parent (joe, harry).
                                          A=bob
                                          A=allen
                                   Goal: ancestor (A, allen)
```

Goal: ancestor (A, B)

Slide 24

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Slide 23

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

```
Execution of Prolog Programs. SLD-Tree.
        ancestor (fred, A)
                      _____[fred/X,A/Y]
   [fred/X,A/Y]
parent (fred, A) parent (fred, Z), ancestor (Z, A)
  [dave/A]
                  ancestor (dave, A)
        parent (dave, A)
                                  parent (dave, Z), ancestor (Z, A)
             [bob/A]
                                          [bob/Z]
                                   ancestor (bob, A)
                  [bob/X,A/Y]
                                                   [bob/X,A/Y]
                          parent (bob, A)
                                                parent (bob, Z), ancestor (Z, A)
                          [allen/A]
                                                        [allen/Z]
                               ancestor (allen, A)
                                                                      m/X A/VI
                                                               ____[all
                                      parent (allen,A) fail
                                                              parent(allen, Z), ancestor(Z.A)
fail
                                                           CS3234 - Logic and Formal Systems - Lecture 05 - 09/09/04
Slide 25
```

Free and Bound Variables

When a substitution is computed, a pair x/t is called a *binding*.

If t is a variable, then x is called *free*.

If t is a non-variable term, then x is called bound.

Prolog uses special predicates for arithmetic, accessing files, etc. Such predicates have restrictions on using free variables.

Slide 26 CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

```
Arithmetic Predicates
                                       "Less then" predicate:
    The predicate is:
    ?- X is 2+3.
                                       ?-0 < 1.
    Answer: X=5
                                       Answer: Yes
    ?- 5 is 2+3.
                                       ?- X = 0, X < 1.
    Answer: Yes
                                       Answer: Yes
                                       - X < 1, X = 0.
    ?- 5 is 2+X.
    Error! Free variable not allowed
                                       Error! Free variable not allowed
                                       on the right side of is
    on the right side of is
                                                CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04
Slide 27
```

```
Correct program:

factorial(0,1).
factorial(N,X):-
N > 0, N1 is N-1, factorial(N1,X1), X is X1*N.

Goal: ?- factorial(5,X).
Answer: X=120

Wrong program:
factorial(0,1).
factorial(N,X):-
N > 0, N1 is N-1, X is X1*N, factorial(N1,X1).

Goal: ?- factorial(5,X).
Error!!!
```

```
Lists (By Example)
    Examples of lists:
        [1,2,3,4]
         [] — empty list.
        [1|[2,3,4]] — same as [1,2,3,4],
                           same as |(1, |(2, |(3, |(4, nil))))
        ?-[H|T] = [1,2,3,4].
        Answer: H=1, T=[2,3,4]
        ?= H=a, T=[b,c,d], X=[H|T].
        Answer: H=a, T=[b,c,d], X=[a,b,c,d]
    Warning:
        - H=[a,b,c], T=[d,e,f], X=[H|T]
        Answer: X=[[a,b,c],d,e,f]
    [H|T] is syntactic sugar for | (H,T).
    [] is syntactic sugar for nil.
Slide 29
                                             CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04
```

```
Lists: append

append([],X,X).
append([H|T],X,[H|T1]) :- append(T,X,T1).

Goal: ?- append([a,b,c],[d,e,f],A).
Answer: A=[a,b,c,d,e,f]

Goal: ?- append([a,b,c],A,[a,b,c,d,e,f]).
Answer: A=[d,e,f]

Goal: ?- append(A,B,[1,2,3]).
Answer: A=[], B=[1,2,3]
A=[1], B=[2,3]
A=[1,2], B=[3]
A=[1,2,3], B=[]
```

```
Lists: Sum of All Elements

sum([],0).
sum([H|T],X):- sum(T,X1), X is X1+H.

Goals: sum([1,2,3,4],X)
Answer: A=10

sum([1,2,3,4],10)
Answer: Yes

sum([1,2,3,4],11)
Answer: No

sum(A,10)
Error!!!
```

```
Lists: member
    member(H,[H|_]).
    member(X,[H|T]) := member(X,T).
    Goals: ?- member(1,[1,2,3,4]).
                                                 ?- member(1,A).
                                                 Answer: A=[1|_]
            Answer: Yes
                                                        A=[_,1|_]

A=[_,-,1|_]

Infinite list of
            ?-member(10,[1,2,3,4]).
            Answer: No
                                                          bindings!!
             ?- member(A,[1,2,3]).
            Answer: A=1
                    A=2
                     A=3
Slide 32
                                             CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04
```


