Resolution and Logic Programming

% Ground resolution

v Unification and occur check

% General Resolution

% Logic Programming

% SLD-resolution

% The programming language Prolog

= Syntax
= Arithmetic
= Lists

Motivation (1)

e We want to show @ ="V, for two propositional formu-
las @, V.

e Assume Dis Dy A---AD,, inCNF, and Vis LiA--- A
Ly, a conjunction of literals.

e Showing @ |= ¥ is equivalent with showing that the set
of formulas {®y,...,®P,, -V} is unsatisfiable.

e Resolution: a procedure Res(y,%2) applied to two
formulas, and returning a (simpler) formula ¥, such
that, if {)1,%2,%} is unsatisfiable, then so is {),%2}.

Slide 1 €S3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Slide 2 €83234 — Logic and Formal Systems — Lecture 05 — 09/09/04.

Motivation (2)

e We hope to produce the iteration
{®y,...,P,,~V}
{(Dl 3 7(13717_'\{17Res(_'\{‘7(bk1) = Xl}
{(Dl 1t 7(13717_'\{17X] 7Res(xlv(bk2) = XZ}

{ Py, P, =, %05 X1, Res (-1, Py,) = L} — unsatisfiable
where 1 <k; <n,1 <i<l|.

e According to the property on the previous slide, if the last set is
unsatisfiable, then so is the first set.

e A procedure showing that a set of formulas is unsatisfiable is called
a refutation procedure.

Slide 3 €S3234 Logic and Formal Systems Lecture 05 09/09/04

CNF and Clausal Form (1)

e Given the CNF propositional formula ® = ©| A ®,,, where ®;
are disjuncts, | <i<n

e Foreachi, 1 <i<n,®;=-pyV-ppV---Vapr,VgiV---V
qil;

e @;isequivalentto p;jy A--+Apy, — q;1 V-V g, which we call
a clause.

e We represent the clause by pji,..., pi, = qit, -, qi,
e We represent ® as the set of clauses
{(pity- s P = @ity -~ 4it), -, Q1 < i< n}

which we call the clausal form of .

Slide 4 C83234 Logic and Formal Systems Lecture 05 09/09/04

CNF and Clausal Form (2)

=(p1 A+ A py) can be written as p; A - A
pr— T,0raspi,...,px—

q1V---Vgq can be written as L — ¢qy,...,q,
oras — qi,...,q

| can be written as 1. — T, and is denoted by
O (empty clause).

€$3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Slide 5

Ground Resolution

Given two clauses

X1 Ply--sPhye--Pmy =415y
X2y Ty = S1y.-. 8] Spy

If py and s; are the same propositional symbol, then Res(y,%2) is
Plyeos Pk=15Pk+1s s PmyT 1y s Fmy = 1y ooy Gnys Sty ooy SI=15 S0+« -5 Sna
This is similar to the following cancelling rule in arithmetic.

a+b = ¢
c = d+e

a+b+¢ = ¢ +d+te

Slide 6 C$3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Ground Resolution Example

P is pAg — r %1 =Res(P,¥) is p,q—
D) s - p X2 = Res(y1,®2) is q—
D3 s - q %3 =Res(y2,®P3) is O
Y ois ro—
Alternatively
X1 :Res(fl>|,<1>z) is g—r
X2 = ReS(X| ,@3) is —r
%3 =Res(yp,¥) is O
Slide 7 (CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Predicate Logic Clauses

A predicate logic clause:
py),a(f(%),2) = r(nz,w),s(g(z),w)
Meaning:

VavyVeaw (p(x,y) Aq(f(x),2) = r(32,w) Vs(g(2),w))

o First order clauses are a subset of predicate logic: not all predicate
logic formulas can be expressed as clauses.

o They are more general than a Turing machine: can specify all pos-
sible computations.

Slide 8 €83234 — Logic and Formal Systems — Lecture 05 — 09/09/04.

Non-Ground Resolution

Consider the following first order clauses.

X1 :Alv---vAlu---7Antl _>Bly'--anl
X2 Cly---ysz _>Dly-"7D]7"'7DI11
where the As, Bs, Cs, and Ds are first order atoms. Assume there ex-

ists a substitution O such that A;6 = D;0. We call 6 a unifier. Then
ReS(Xle,Xze) is

A1D,...,Ak-10,A44116,...,4,,0,C19,...,C, 6 —
Ble:---vBmgeyDlev---7D[—197Dl+le7---:Dnge

which is the same as

(Alv---7AA717AA+17---7Amval:---7Cnl -
Bi,..sBuy, D1, ,Di_1,Dp 11, -, Dyy)0

Slide 9 €S3234 Logic and Formal Systems Lecture 05 09/09/04

Non-Ground Resolution Example

X1 o p(xy) = q(»2)

X2 o q(f(w),v) = r(v)

0 1 [f(w)/y,z/V]

x10 : p(x, f(w) = q(f(w),2)
X0 : q(f(w),z) = r(2)

Res(x10,%20) : p(x,f(w)) = r(z)

Slide 10 C83234 Logic and Formal Systems Lecture 05 09/09/04

Unification, MGU

Given two atoms, A, B, can we find a unifying sub-
stitution 0, such that A6 = BO? Answer: YES.

A most general unifier (mgu) is a unifying substi-
tution 6 such that for every other unifier 6/, there
exists a substitution ¢ such that

Slide 11 €$3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Unification Algorithm

The following algorithm computes the mgu of two atoms A and B, or returns “no
solution” if no such mgu exists.

. If the predicate symbols of A and B are not identical, return “no solution”.

. From p(11,...,1t) = p(t},-..,1;) derive the set of equations {r; =1{,...,5 =1 }.

. Erase all equations of the form x = x, where x is a variable.

. Transform all equations of the form 7 = x, where 7 is not a variable, into x =1.

. Let ' = 1" be an equation where ¢’ and " are not variables. If the function
symbols of /" and " are not identical, return “no solution.” Otherwise, replace
the equation f(1],...,1;) = f(t],...,1}") by the equations 1] =17, ..., 1/ =1].

6. Let x = be an equation such that x has another occurrence in the set of equa-

tions. If 7 contains x, return “no solution.” Otherwise replace all other occur-

rences of x by 7.

L S S

Repeat steps 4, 5, and 6 until it is no longer possible. If the “no solution™ answer has
not been produced yet, all equations are of the form x = 7, where 7 does not contain x.
The mgu contains all the bindings 7 /x, where x = is an equation in our set.

Slide 12 C$3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Example of Applying the Unification Algorithm

Unify the atoms
P S(x,h(x),y)) and p(g(y), /(g(2),w:2))
First derive the equations:

(1) x=g)
(2) f(x,h(x),y) = f(8(2),w,2)

Apply step 5 and replace (2) by

Example (2)

Current set: Replace (2”) by
(1 x=30) y=2 < already in the set
@) x=g0)
(3) w=h(x) Use (4”) in (1”) and (3”). The set
4 y=z is now:

Apply step 6 and use (17) in (2”) and x=g(z)

639 w=h(g(2))

z

(1) x=g0)

(3) x=2(2) 2" gly)=2g(2) Substitution:

4) h(x)=w (3") w=h(g(v)

" y —
) y=z @ y=z [g(2) /x, h(g(2))/w, z/5]
Apply step 4 and replace (4) by

(6) w=h(x)
Slide 13 (CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04 Slide 14 (CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04
Example (3) Occur Check

px, f(x,h(x),y))[g(z)/x, h(g(2))/w, z/y] is
p(g(2),f(8(2),h(g(2)),2))

p(g(y), f(g(z),w,2))[g(2)/x, h(g(2))/w, z/y] is
p(g(2), f(g(2),h(g(2)),2))

Slide 15 €S3234 Logic and Formal Systems Lecture 05 09/09/04

Step 6 in the unification algorithm can be very expensive.
Consider unifying
p(x1,x2,...,xn,x0) and p(f(x0,%0), f(x1,%1), .-, f (Xn,%n))

This produces:

f(x0,x0)
x2 = f(f(x0,%0), f(x0,%0))
x5 = f(f(f(x0,%0),f(x0,%0)), S (f(x0,%0), [(%0,%0)))

=
Il

x, = term with 2" occurrences of xo
xo = term with 27! occurrences of xg

Using step 6, we must return “no solution” ; detecting the fact that xg
occurs in the right hand side of last equation may require exponential
time,

Slide 16 C83234 Logic and Formal Systems Lecture 05 09/09/04

General Resolution

Consider the following first order clauses.

X1 :A|7"'7Ak7"'7AI}I\ _>Bl:---73n|
X2 Clv"'ycmz —Dy,...,Dpy...,Dy,

where the As, Bs, Cs, and Ds are first order atoms. Denote by 6 the mgu
of Ay and D;. Then Res(y,%2) is

(Aly---vAkflvAH»lv---7A111|7Cl:---7Cn| -
Bi,...,Buy, Dy, ... ,Di_1,Dyyq,. .., Dy,)0

If there exist no two unifiable atoms A; and D, then the resolution rule
is undefined.

Resolution procedure: Let S be a set of clauses and define Sy = S.
Assume that S; has been constructed. Choose two clauses %, X2 € Si
such that Res(1,%2) is defined. If Res();,)2) = U, the original set S is
unsatisfiable. Otherwise, construct S;| = S;URes()1,%2). If S = S;
for all possible pairs j; and)2, then S is satisfiable.

Example of General Resolution

Slide 17 €$3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Original set: Application of the resolution procedure:
L p(x) = q(x),r(x, f(x)) 8. gla)— la/x] 3,6
2. p(x) = q(x),s(f(x)) 9. —q(a)s(fla) la/x] 24
3. —i(a) 10. —s(f(a)) 8,9
4. = p(a) 1. —q(a),(a,f(a)) [a/x] 14
5. rla,y)—=t(y) 12. —r(a, f(a)) 8,11
6. 1(x),q(x) > 13. —1(f(a)) [f(a)/y] 5,12
7. 1(x),s(x) = 14. s(f(a)) — [fla)/x] 7,13

15. O 10,14

Slide 18 C$3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Soundness and Completeness of Resolution

Logic Programming

Soundness: If the unsatisfiable clause O is de-
rived during the general resolution procedure, then
the original set of clauses is unsatisfiable.

Completeness: If a set of clauses is unsatisfiable,
then the empty clause [can be derived by the res-
olution procedure.

From now on, instead of writing clauses as
A[,...,Am — Bi,...,By
we shall prefer to write clauses as

Bi,...,By < Ay,..., Ay

For n =1 we have Horn clauses, typically denoted as

H«—Ay,...,A,

H —the head, Aj,...,A, — the body

If n =0, the clause is a goal.

If n=1and m = 0 (body is empty), we have a fact.
A logic program is a set of Horn clauses.

Slide 19 €S3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Slide 20 €83234 — Logic and Formal Systems — Lecture 05 — 09/09/04.

Resolution for Logic Programs

Example of Resolution for Logic Programs

In what follows, we shall introduce restrictions for the res-
olution procedure that would make it more computationally

Logic program: Applying the resolution procedure, with

computation and search rules.

officient L q(xy) < p(x.y)
: 2. q(x,y) « p(x,2),q(z,y) 7. <+ p(d,a) [d/x,a/y] 6,1
" . . L 3. p(ba) « 8. «p(d2),q(z,a) [d/x,aly] 712
Deﬁn}tlon: A computation rule is a .rule for choosing }1t— 4. plc,a) 9.« q(b,a) [b/2] 8,5
erals in a goal clause. A search rule is a rule for choosing 5. p(d,b) + 10. « p(b,a) [b/x,aly] 9,1
clauses to resolve with the chosen literal in a goal clause. 6. Goal: « g(d,a) 1.0 10,3
Typical computation rule: leftmost atom in a goal I".
Typical search rule: clauses are tried in the order in which
they are written.
Slide 21 €S3234 Logic and Formal Systems Lecture 05 09/09/04 Slide 22 (83234 Logic and Formal Systems Lecture 05 09/09/04
The Programming Language Prolog Prolog Example
A Prol ... basic f £ H | Gi ancestor(X,Y) :— parent(X,Y).
rolog program s, in its most basic form, a set of Horn clauses. Given ancestor (X,Y) :- parent (X,Z),ancestor (Z,Y).
a goal, the execution of the program and the goal is achieved by applyin
the resolution procedure with the following rules: parent (bob, allen) .
Computation rule: choose literals from left to right in the goal. parent (catherine,allen) .
parent (dave, bob) . Goal: ancestor (fred, bob)
Search rule: Choose clauses top-to-bottom as they are written in parent (ellen, bob) . Answer: Yes
the program text. parent (fred, dave) .
)) . . parent (harry, george) . Goal: ancestor (fred, a)
The res.olullon procedure augmented with these rules is called SLD- parent (ida, george) . Answer: A=dave
resolution. parent (joe, harry) . A=bob
Syntax: A=allen
e Predicate and function symbols start with lowercase letters. Goal: ancestor (A,allen)
e Variables start with uppercase letters or underscore.
e The arrow is represented by the :— operator. Goal: ancestor (A, B)
e The dot . acts as a clause separator.
Slide 23 (CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04 Slide 24 (83234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Execution of Prolog Programs. SLD-Tree.

ancestor (fred, A)

lfred/&w;(,ml

parent (fred, A) parent (fred, Z) , ancestor(Z,A)
Idave/Al‘

[dave/Z]
ancestor (dave,)
A=dave Iwml
parent (dave, A) parent (dave, Z) , ancestor (Z,A)
1Imh/Al‘ [bobiz]

ancestor (bob, A)

O
Acbob [bob/X,AY] [bob/X,A7Y]

Free and Bound Variables

parent (bob, A) parent (bob, Z) ,ancestor(Z,A)
[allen/A]‘ ‘ lallen/Z]
O ancestor (allen,A)
As=allen [allen/X,A/Y] [allen/X,A/Y]
parent (allen,A) parent (allen, z) ,ancestor(Z.A)
fail fail
Slide 25 €53234 — Logic and Formal Systems — Lecture 05 — 09/09/04

When a substitution is computed, a pair x/7 is
called a binding.

If ¢ is a variable, then x is called free.
If 7 is a non-variable term, then x is called bound.

Prolog uses special predicates for arithmetic, ac-
cessing files, etc. Such predicates have restrictions
on using free variables.

Slide 26 €83234 — Logic and Formal Systems — Lecture 05 — 09/09/04.

Arithmetic Predicates

The predicate is: “Less then” predicate:

?— X is 2+43. ?- 0 < 1.
Answer: X=5 Answer: Yes

?- 5 is 2+3. ?-X=0, X < 1.
Answer: Yes Answer: Yes

?- 5 is 2+4X. ?- X <1, X=0.
Error! Free variable not allowed Error! Free variable not allowed
on the right side of is on the right side of is

A Factorial Program

Correct program:

factorial(0,1).
factorial (N,X) :—
N > 0, N1 is N-1, factorial(N1l,X1l), X is X1*N.

Goal: ?—- factorial(5,X).
Answer: X=120

‘Wrong program:
factorial(0,1).

factorial (N,X) :-—
N > 0, N1 is N-1, X is X1*N, factorial (N1,X1l).

Goal: ?- factorial(5,X) .
Error!!!

Slide 27 €S3234 Logic and Formal Systems Lecture 05 09/09/04

Slide 28 C83234 Logic and Formal Systems Lecture 05 09/09/04

Lists (By Example)

Examples of lists:
[1,2,3,4]
[1 — empty list.
[1][2,3,4]] — sameas [1,2,3,4],
sameas | (1,1(2,1(3,](4,nil))))

?- [H|T] = [1,2,3,4].
Answer: H=1, T=[2,3,4]

?- H=a, T=[b,c,d], X=[H|T].
Answer: H=a, T=[b,c,d], X=[a,b,c,d]

Warning:
?- H=[a,b,c], T=[d,e,f], X=[H|T]
Answer: X=[[a,b,c],d, e, f]

[H|T] is syntactic sugar for | (H,T).
[1 is syntactic sugar fornil.

Lists: append

Slide 29 €$3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

append ([],X,X) .
append ([H|T],X, [H|T1]) :- append(T,X,T1).

Goal: ?— append([a,b,c], [d,e, £f],A).
Answer: A=[a,b,c,d, e, f]

Goal: ?— append([a,b,c],A, [a,b,c,d,e, f]).
Answer: A=[d, e, £]

Goal: ?- append (A,B, [1,2,3]).

Answer: A=[], B=[1,2, 3]
A=[1], B=[2,3]
A=[1,2], B=[3]
a=[1,2,3], B=[]

Slide 30 C$3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Lists: Sum of All Elements

Lists: member

sum([],0).
sum([H|T],X) :— sum(T,X1),

Goals: sum([1,2,3,4],X)
Answer: A=10

sum([1,2,3,4],10)
Answer: Yes

sum([1,2,3,4],11)
Answer: No

sum (A, 10)
Error!!!

X is X1+H.

member (H, [H]|_]) .

member (X, [H|T]) :— member(X,T).

Goals: ?- member(1,[1,2,3,4]).
Answer: Yes

?—- member (10, [1,2,3,4]).

Answer: No

?- member (A, [1,2,3]).
Answer: A=1

A=2

A=3

?—- member(1l,A).

Answer: A=[1]_]
A=[_,1].]
A=[, ,1].]
Infinite list of
bindings!!

Slide 31

€§3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Slide 32

53234 — Logic and Formal Systems — Lecture 05 — 09/09/04.

