
1 Tutorial 1

1. Give real life examples of information where you’d primarily protect it for a subset of “confi-
dentiality,” “integrity,” and “availability”. For example, data whose integrity you care about
but not its confidentiality or availability etc. etc. Some bit of contrivance is ok!

Confidentiality only: say maybe when you want to destroy some information forever, say your
medical records forever. Or maybe this is to destroy its availability forever.

Integrity & Availability: You’ve just been married to your favorite person. You want people
to know about it and you want them to know that you married the right person.

Availability only: You’ve just started a rumor so you don’t care about the information’s
integrity, and you don’t want it to be confidential.

Confidentiality & Integrity: say maybe the contents of a will. Or software distribution à la
superdistribution.

2. Give examples of how your favorite operating system realizes (or fails to realize) one or more
of Saltzer & Schroeder’s design principles for secure systems.

Complete mediation: Unix fails for file accesses but NFS4 apparently enforces them.

Open Design: Linux probably meets it, Windows probably doesn’t.

Least Privilege: Vanilla Unix probably fails it because it’s not a privilege-based OS. Processes
must become root in order to do security related activities.

Least Common Mechanism: PAM might be an example of it.

Separation of privileges: Need both password and location of access before being allowed into
the system.

3. What are “canaries” and how do they help in a specific kind of buffer overflow.

See Section 3.4.2 from the Cowan et. al paper.

4. Compute GCD(1875, 405) showing every step in the computation. Explain why

a× b mod n = (a mod n× b mod n) mod n

GCD(1875, 405) = GCD(405, 255) = GCD(255, 150) = GCD(150, 105) = GCD(105, 45) =
GCD(45, 15) = 15.

5. Encrypt the following text using Vigenère’s encryption with the keyword “NUS”.

The moon began to rise, and I thought of the placid look at the white ceiling, which had
passed away. The moon began to rise, and I thought of the pressure on my hand when I
had spoken the last words he had heard on earth.

GBW ZIGA VWTUF GI JVMW, NHV V NZBOYUN GS NZR JDNWAQ FGBE SG NZR
QZVNW PYAYCFT, QZVWZ UUV CUKFYV NQSL. NZR GGBH TRASA NG ECKR,
UFQ C LUIMTBL BZ LUY HEYKFOJR IF ZS ZNHV JBWA C ZNX KCICRH LUY DNML
JIJQM ZR BSQ BWNLV BH WNLLU.

6. Find the index of coincidence of the encrypted text in the previous question. From the IC,
can you make a determination of the size of the keyword used for Vigenère encryption.

IC ≈ 0.04108. Keyword length ≈ 10!

7. Consider the Linear Congruential Generator

ri+1 = (a× ri + b) mod n

where n = 231 − 1, a = 16807, b = 0. Starting with a seed of 32 generate the next hundred
(pseudo) random numbers and comment on whether the numbers are uniformly distibuted
over 0 . . . (n− 1).

537824, 14375175, 25108420, 48591184, 65647798, 104263761, 153351643, 166087451, 203279197,
228293697, 230611224, 239140606, 268720695, 279745341, 298396290, 310810960, 312221300,
385194808, 400687501, 440525240, 448940298, 449273380, 455934356, 457809047, 499264043,
520030653, 524918388, 529015328, 578319116, 584258316, 617222191, 628243628, 628413197,
667068796, 669970701, 699968546, 704869445, 705353886, 772130285, 773030562, 791254072,
838242904, 855763208, 912161872, 932675420, 940810486, 948348447, 992644487, 1023877877,
1052596858, 1066181259, 1081247786, 1085397761, 1090420128, 1109442088, 1114252897, 1119575216,
1133512504, 1191038039, 1200839479, 1220965263, 1229536575, 1268928922, 1294261505, 1307349127,
1327472840, 1334282928, 1388445880, 1453425998, 1483562155, 1526371937, 1531577471, 1554071509,
1556928156, 1560617032, 1583736949, 1662083261, 1683430075, 1711585032, 1722923113, 1733564591,
1819461042, 1822342580, 1850531504, 1851702990, 1861047144, 1940149762, 1943997415, 1954580925,
1966310418, 1987295956, 1993595962, 2014465249, 2024811874, 2037744988, 2040981744, 2044225328,
2072676013, 2097504821, 2110229375

2 Tutorial 2

1. Find all primes ≤ 144 using the method of sieving designed by Eratosthenes. Draw a 12× 12
grid and cross out all numbers that have been “sieved out” by the method.

1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70 71 72
73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96
97 98 99 100 101 102 103 104 105 106 107 108
109 110 111 112 113 114 115 116 117 118 119 120
121 122 123 124 125 126 127 128 129 130 131 132
133 134 135 136 137 138 139 140 141 142 143 144

2. Compute (34528567 × 23567 + 1078/65) mod 29 given that 29 is a prime.

= 3457 × 237 + 5 ∗ (−4) use Fermat’s
= 267 × 237 − 20
= 17× 1− 20
= −3
= 26

Note: 34528567 = 3451020∗28+7. So by Fermat’s theorem we get 3451020∗28 mod 29 = 1 mod 29.

3. Use modular exponentiation to calculate 975678 mod 101.

5678 = 10110001011102. So we need to find 972, 973 . . . 9712 mod 101. These values are
16, 54, 88, 68, 79, 80, 37, 56, 5, 25, 19, 58.

So, 975678 mod 101 = 16× 54× 88× 79× 5× 25× 58 mod 101 = 37.

4. Find 45623457−1 mod 2389511 using the EGCD method.

It should be 354745.

(1, 0, 45623457)
(0, 1, 2389511)
(0, 1, 2389511)

(1,−19, 222748)
(1,−19, 222748)

(−10, 191, 162031)
(−10, 191, 162031)
(11,−210, 60717)
(11,−210, 60717)
(−32, 611, 40597)
(−32, 611, 40597)
(43,−821, 20120)
(43,−821, 20120)
(−118, 2253, 357)
(−118, 2253, 357)

(6651,−126989, 128)
(6651,−126989, 128)
(−13420, 256231, 101)
(−13420, 256231, 101)
(20071,−383220, 27)
(20071,−383220, 27)
(−73633, 1405891, 20)
(−73633, 1405891, 20)
(93704,−1789111, 7)
(93704,−1789111, 7)
(−261041, 4984113, 6)
(−261041, 4984113, 6)
(354745,−6773224, 1)

For each of these questions you may write a program to solve it. You must show (and demonstrate
understanding) of all the steps needed to arrive at the answer.

3 Tutorial 3

1. Convert the super increasing sequence

A = {81, 162, 322, 572, 1167, 2386, 4702, 9469, 18888, 37766, 75593, 151190,
302324, 604627, 1209249, 3926579}

into a “random” looking one by transforming it using w = 279 and m = 7936729.

This looks to be

A = {22599, 45198, 89838, 159588, 325593, 665694, 1311858, 2641851,
5269752, 2599985, 5216989, 2498365, 4981106, 2019624, 4037853,
246939}

Encode the message “Sammy Cheng is cool la” by taking two characters at a time and using
their ASCII bit pattern to make a selection in the “random” knapsack.

Encoding “Sa” makes the selection 0x5361 into the knapsack. This is the bit sequence
0101001101100001

= 45198 + 159588 + 1311858 + 2641851 + 2599985 + 5216989 + 246939 = 12222408

Decrypt the encrypted message using the trapdoor (w, m, A) to recover the message.

w−1 = 3470541. So 12222408× 3470541 mod 7936729 = 4054843. Solving for it in the super
increasing knapsack yields the selection 0101001101100001.

And so on. . .

2. For the RSA cryptosystem where p = 8663835841 and q = 802360858343257, find d for
e = 65537. Then encrypt the message ‘‘attack@2” by using the concatenation of the ASCII
encoding of each character in the message as a large integer. Then decrypt the cipher text
using the private key to verify that you’ve recovered the original message.

n = p×q = 6951522761929833877274137, φ(n) = 6951522761127464355095040. d = e−1 mod φ(n) =
1385807175704263573238273.

attack@2 is the hex sequence 61747461636B4032 = 7022365680606068786. Its encryption is

702236568060606878665537 = 1072522137514127361609926

Its decryption is

10725221375141273616099261385807175704263573238273 = 7022365680606068786

3. Find primes p and q so that 12-bit plaintext blocks can be encrypted with RSA.

Twelve bits means that we must find primes p, q such that p × q = n ≥ 4096. Say p = 43,
q = 419.

For each of these questions you may write a program to solve it. You must show (and demonstrate
understanding) of all the steps needed to arrive at the answer.

4 Tutorial 4

1. Use the Miller-Rabin primality test to determine whether the following numbers are likely to
be prime. Try with bases b = 2, 3, 4. Show all the steps in the computation i.e., the value of

by where n− 1 = 2e · y and then the values in each iteration of the computation of by2e

.

125.
231 = 23, 232 = 29, 292 = 91. So 125 fails the Fermat test.

561.
235 = 263, 2632 = 166, 1662 = 67, 672 = 1!. 561 fails the Miller-Rabin primality test.

3017049239485840259629.

2754262309871460064907 = 1041102915096788007582
10411029150967880075822 = 2822113103589653422290
28221131035896534222902 = 669058088867085399090

So 3017049239485840259629 fails the Fermat test for primality.

5472011961261553846573217.

2171000373789423557705413 = 4152402373042979414844561
41524023730429794148445612 = 297268502766585781027689
2972685027665857810276892 = 1297150584852342804595249
12971505848523428045952492 = 5472011961261553846573216 = −1

We are finished with the test because we know that Fermat’s result will be 1. So this
base seems to indicate that the number is a prime.

2. For a DES key of 0x0123456789ABCDEF and a plaintext of 0x0123456789ABCDEF , show
all the intermediate values of the computation in getting from L0, R0 to L1, R1. You can verify
the final values using the CGI script des.cgi. Note that I have removed the part of the script
that expands the F function.

3. Show that the following property holds for DES encryption

DESk(X) = DESk(X)

That is, encrypting the complement of a block with the complement of the key results in the
complement of the cipher text.

For each of these questions you may write a program to solve it. You must show (and demonstrate
understanding) of all the steps needed to arrive at the answer.

5 Tutorial 5

1. Some proposals suggest making the RSA modulus a product of three primes, n = pqr of equal
size. Describe the RSA system in this case. That is, explain how e and d are chosen.

Sketch:
Look at the proof of the RSA algorithm in Sec 3.5 of the text. Encryption and decryption with
RSA makes use of the property that (P e)d mod n = P . This holds when ed = 1 mod φ(n).
With 3 primes where n = pqr then RSA works the usual way to determine e and d. If n = pqr
then φ(n) = n(1− 1

p
)(1− 1

q
)(1− 1

r
) = (p− 1)(q − 1)(r − 1).

2. Show how you can construct a permutation from a one-way function. Think about how DES
does the same thing! In particular, show how you can construct a block cipher using SHA1
(you can pattern it after how DES does it). What is the block length of your cipher? What
is its key length? How does the block cipher encrypt and decrypt?

Sketch:
A block cipher is one means of doing a permutation, i.e. Ci is permutation of E(K, Pi). So
one way of doing this is to use a use a one way function to construct a block cipher. There
a number of possible block cipher constructions. One way is to use a Feistel network like
DES. For the F function, we will use SHA1, choosing appropriately some number of bits. For
example, Fk(x) = SHA1(k.x) which is k concatenated with x. The block length and key
length can be chosen appropriately within the parameters of the input and output size of
SHA1. After some rounds, 3 is sufficient, you will have a reasonable block cipher.

3. Suppose that a cryptanalyst discovers a message P that is not relatively prime to the en-
ciphering modulus n = pq used in a RSA cipher. Show that the cryptanalyst can factor
n.

Sketch:
Either p or q is gcd(n, P) giving a factorization of n.

4. For a hypothetical 5-DES encryption scheme with 5 independent keys used as E-E-E-D-D,
what is the effective key length for a KPA (known plain-text attack), CPA (chosen plain-text
attack) given that storage is not a consideration.

Sketch:
For a KPA, a more efficient attack than pure enumeration is the meet in the middle attack. 5-
DES gives C = Dk5(Dk4(Ek3(Ek2(Ek1(P))))). The middle attack is to find a value M roughly
in the middle of the cipher cascade which corresponds to the given P0 and C0 for a particular
key k1, · · · , k5. Choose M to be after k3. We need to guess/find the keys which lead to P0 and
C0 from M. This can be done by constructing two tables. ¿From P0 construct one table for
all possible keys k1 to k3, i.e. Mi = Ek3(Ek2(Ek1(P0))). Similarly from C0, encrypt to obtain

a table for possible values of M ′
i for the possible keys k4 and k5. A matching value, Mi = M ′

i ,
indicates that the corresponding keys produces a consistent ciphertext C0 for plaintext P0.
There may be a number of possible keys which are consistent, this can be verified with other
cipher-plaintext pairs. The time complexity assuming O(1) hashing is O(2k1+k2+k3), thus the
effective keylength is k1 + k2 + k3.

A CPA attack means that we can generate as many Pi, Ci pairs as we like. Using the meet in
the middle table construction, the worst case time complexity is unchanged.

6 Tutorial 6

1. Encrypting the message “singapore” using a mono alphabetic substitution cipher created using
the keyword “secure” results in the ciphertext:

(a) PFKBSMLOR (b) ODJASLKNR (c) RHMFSONQB (d) QGLDSNMPA (e) None of the
above

Ans: I get the translation map

ABCDEFGHIJKLMNOPQRSTUVWXYZ
SECURABDFGHIJKLMNOPQTVWXYZ

which makes for the translation “PFKBSMLOR”.

2. When the Miller-Rabin primality test fails for a number n, n is definitely composite. But if
it succeeds for n, n is not necessarily a prime.

(a) True (b) False (c) Can’t really tell (d) None of the above.

Ans: True

3. Is log n

(a) O(n) (b) O(n2) (c) O(2n) (d) all of the above (e) none of the above

Ans: (d)

4. Consider the equality (a + b)p ≡ ap + bp mod p. Is it

(a) True (b) False (c) Depends on a, b, p (d) None of the above.

Ans: (c). It’s not specified that p is a prime.

5. For n = 101, will the table 3×x mod 101 (0 ≤ x < 101) generate a permutation of (0 . . . 100)?

(a) True (b) False (c) Can’t really tell without generating the whole table (d) Damn!

Ans: (a) because GCD(3, 101) = 1 .

6. Approximately how many samples will one need to find a prime around 10000000000000000.
That is, if one were to randomly generate numbers close to 1016, how many might you need
to run the Miller-Rabin test on before you accept it as a probable prime.

(a) 5000000000000000 (b) 37 (c) 19 (d) Can’t really say.

Ans: (c) One would make approx log 1016 = 37 samples before finding a prime close to 1016.
But approx half of them will be even and wouldn’t need to have the Miller-Rabin applied to
them.

Because of the ambiguity in the question (b) is also OK.

7. What can be said about the DES initial permutation IP?

(a) DES would be substantially weakened without it (b) The strength of DES is equivalent
to its strength without the IP (c) Without IP the keyspace to be searched to mount a known
plaintext attack could be reduced substantially (d) It’s hard to say anything definitive.

Ans: (b) See [KPS02] for details.

8. In DES, suppose that F (R, K) = 0, i.e., for any input the F function output 0. What function
does DES compute?

(a) Inverse (b) Identity (c) Some other permutation (d) None of the above.

Ans: (c) DES has a gratuitous swap at the end, so what you get before IP−1 is (R0, L0) not
(L0, R0). So what you get is IP−1(SWAP (IP (input))) which is just a permutation.

9. In DES, how many bits in (L1, R1), i.e., the 64 bits of the result of the first round, are related
to bit 1 in (L0, R0)? I.e., if the value of bit 1 in L0 changes, how many bits of (L1, R1) may
be changed? Assume key is the same in both cases.

(a) 1 (b) 2 (c) 4 (d) 32 (e) 64 (all bits in L1 and R1)

Ans: (a)

10. Suppose DES is modified so that the high order 44 key bits are set to 0 so that only the 20
low order bits are used. What is the effective key length of this system?

(a) 20 (b) 18 (c) 17 (d) 15 (e) 12

Ans: (c). Bits 48, 56 & 64 are parity bits which will be ignored.

11. What is φ(p2) where p is an odd prime?

(a) p(p − 1) (b) (p − 1)(p − 1) (c) There isn’t a closed form expression just involving p (d)
p2 − 1

Ans: (a). (p2 − 1)− (p− 1) = p2 − p = p(p− 1).

12. For how many primes p is 17p + 1 a square?

(a) None (b) One (c) Two (d) Infinitely many (e) Can’t really tell.

Ans: (b). Let x2 = 17p+1. Then x2−1
17·p = 1. Because both 17 and p are prime, 17 must divide

either (x− 1) or (x + 1) exactly. This works out for x = 18, p = 19.

13. Consider building a message digest function (similar to SHA) using DES. In particular, con-
sider using the CBC mode of DES. Let K be a fixed known encryption key and let IV denote
a fixed public initialization vector. The message could be padded appropriately using zeros
to make it of block length suitable for encrypting with DES.

To generate a hash, encrypt the (possibly padded) message in CBC mode of DES using key
K and initialization vector IV . Output the final block Cn of the resulting ciphertext as the
message digest of the message. What can be said about this setup:

(a) This hash scheme is not collision resistant. (b) This hash scheme is not preimage resistant.
(c) This hash scheme is not second preimage resistant. (d) All of the above. (e) a & b only.

Ans: (d). It is not (a) because given a 64-bit hash value, say c, one can find a single 64-bit
block, say m such that h(m) = c. This is Dk(c)⊕ IV . Actually an arbitrary length message
can be constructed that wil hash to a given value c. That is, you easily generate an arbitrary
number of messages that hash to c. Because of this it is neither (c) nor (a).

14. What is 25792579 mod 19?

Ans: 10.

15. For the RSA system in which n = 852337, e = 3, d = 566091, find the factors of n. Indicate
the smaller factor in the answer.

Ans: ed = kφ(n) + 1 for some integer k. But because e = 3, d < φ(n), and ed− kφ(n) = 1 we
must have k = 1 or 2.

So ed− 1 = 1698272 = 2× 849136. This gives us the equations p + q = n + 1− φ(n) = 3202
and p− q =

√
6843456 = 2616 which gives p = 2909 and q = n/p = 293.

7 Tutorial 7

1. Let a = 1234, b = 4321 and m = 42. Demonstrate how you can use the Chinese Remainder
Theorem (crt) to compute a + b mod m and b769 mod m using a representation with moduli
mi = {2, 3, 7}.
Let m1 = 2, m2 = 3, m3 = 7. In the reduced representation We have 1234 and 4321 represented
by (0, 1, 2) and (1, 1, 2) respectively. (0, 1, 2) + (1, 1, 2) = (1, 2, 4) which is 11 mod m by crt.
(1, 1, 2)769 = (1, 1, 2) which is 37 mod m by crt.

2. Suppose Pablo and Renee share a symmetric secret key and generate a fresh session key
every hour whenever they need to communicate. Assume that Pablo and Renee use different
machines on different networks on the Internet. Under this scheme, Pablo sends to Renee
the message to “pay John $1000”. How can an intruder exploit this scheme? Explain any
improvements.

See what happens with a replay message attack. Replaying the encrypted message plays
havoc with P’s account. Improvements to try – transaction ids, timestamps, authentication
of sender, etc.

3. The symmetric key exchange protocol using a trusted server (page 3 of notes) uses a nonce
Ip. Suppose we simplify the protocol to remove the use of Ip, we may argue for example that
Ip is not used by P or R. This new protocol is less secure than the original one. Explain a
possible attack. What assumptions do you need?

The two protocols: ticket T = EKR
(KPR, P)

OLD NEW
P → S : (P, R, IP) P → S : (P, R)
S → P : EKP

(R, IP , KPR, T) S → P : EKP
(R,KPR, T)

P → R : T P → R : T

One possible attack, assume KR is compromised and R and S have changed their key to K ′
R.

Assume attacker M has already seen protocol session under old key KR. M impersonates
server so does not need to know new K ′

R:

P → M : (P, R)
M → P : EKP

(R, KPR, T)
P → R : T

At step 2, M replays a previous message, he cannot decrypt under KP . At step 3, P can
decrypt message from step 2, so he thinks M is the real server. M watches step 3 and pretends
to be R. M also knows KPR since the ticket T can be decrypted with KR.

Another weakness, if the session key is ever reused, attacker will know this.

4. Consider a session key exchange scheme with RSA using the following following protocol where
KPR is the session key generated by P , KP

pub denotes the public key of P and KP
priv denotes

the private key of P , and encryption and decryption with those RSA keys is denoted by EP

and DP respectively:
P → R : (P, KP

pub)
R → P : (R,KR

pub)
P → R : (P, IP , ER(KPR))
R → P : (R,EP (IP))

Show how an adversary who has control of the network can obtain the session key KPR.

Consider the adversary M who has control of all network traffic. He will intercept and sub-
stitute messages between P and R so that P thinks he is talking to R and vice versa with
R.

P → M : (P, KP
pub)

M → R : (P, KM
pub)

R → M : (R,KR
pub)

M → P : (R,KM
pub)

P → M : (P, IP , EM(KPR))
M now knows KPR

M → R : (P, IP , ER(KPR))
R → M : (R, EM(IP))
M → P : (R,EP (IP))

8 Tutorial 8

Questions 1 and 2 are due the week of October 14, while questions 3, 4 and 5 are due the week of
October 7th.

1. Consider n = p× q where both p, q are (probable) primes. Let

p = 470371337651747200580641806655577929345787339815775238995809

and let

q = 44998447341177314016702369046401726397149954873177618720838261

Find

65979868121280433192872534207000052486263592074347425701725573245489523638457262\
351946261146698247560345

raised to itself (mod n) using (a) modular exponentiation and (b) the Chinese Remainder
Theorem. You must implement both of them yourself. Time both measurements by running
your program 10 times and reporting the average and standard deviation in both instances.

You may use a big integer package and use its multiplication, division, inverse, and other
operations except for its modular exponentiation and chinese remainder theorem implemen-
tations.

The answer you should get (if I’ve got it correct) is

• Using modular exponentiation.

Decimal: 765385769101002231322357756496673841127590558343652908611841-
8613982850185838405413953588038245207580313446648868475771207,

Hex: 0x2F6CA74DDC1D1A023184F6C12446322ABC8811678D15697D3EECF99-
9213294AAAA32F75201EFC0D3C695B26F0E3F84B981947

and it should be faster computed using CRT.

The mean time to compute the exponentiation for my tests was 19.6s, while the standard
deviation was .27s.

• Using CRT

The # in CRT pair is (46331470176823587547910294577961196802777204470566-
6443683387, 296437249292846513087103327847946732297615015366131388972-
39307).

After exponentiation, we get the pair (37046105991296116478998974994184684923-
6520396035595750752143, 134576259453294711191479428142232856319590767-
52927579530958682).

Converting it back to a number we get 76538576910100223132235775649667384112-
75905583436529086118418613982850185838405413953588038245207580313446-
648868475771207.

The mean time to compute the exponentiation for my tests was 19s, while the standard
deviation was .9s.

2. Consider a 512 bit Diffie-Hellman system in which

p = 0x00B074C48A962CDF1EB3895DA6DBE20A7AFBADE32ED9AF48CC7FFE378BBCE063848ECD57CCF\
90D4184E0E91836F156D0D2C8063B948EC179CE54B179C7DADD8B45

q = 0x00A612AB9B9E27938F402C38BF6464BA1BFCA8C1B3
g = 0x373CBDEAFF2C44FE1EA25B500E112383F7E41F6278DA39E9347A640E9C95702A65E6BA2BD15\

4DA6ABDFCB8E73107EB5CA9118DA79406EE2E7DEDC7B4157D15B7

If Alice uses the random integer 6325782345 and Bob uses the random integer 629851207 for
key exchange and use the least significant 64 bits of the resulting shared secret as a DES key
for encrypting traffic, what is the key they agree on?

g629851207×6325782345 mod p = ?.

g = 28930107260108975986042668830046786934714955728374831698122033678565-
981076429623979133917106201561382807774108434450848076959419529833133524-
62167520908727.

p = 92417571032306300911486005276201316817338402924635630421485053394414-
618094001922041490397186262468033562726527431084705041308979451937315317-
50208530385733.

ab = 3984301645217540415.

gab = 1373805251523970282769739522672152212318223686722888570107694963972-
357140298883858527278445092103098036821206551564226489654535322295604375-
693311656534244.

The least 64 bits of this number are gab mod 264 = 7216447536848380132, i.e., 0x6425F8CCE61720E4.

3. Given that the Lamport hash value is sent in the clear over the network, why is it more secure
than a password?

Because any given hash value cannot be reused (it’s one time use only) as a password, and it
is computationally infeasible to derive the “next” hash value from a given hash value.

4. Is the Lamport hash protocol vulnerable to dictionary attack by an eavesdropper? Can
someone impersonating the server do a dictionary attack?

Yes. If Alice chooses a poor password p initially, then given n and hn(p), one can easily
determine p using a brute force attack.

Yes, as in above. The impersonating server can can send an n to Alice to get the corresponding
hn(p) and use it for a dictionary attack. No, in the sense that being a server does not offer
any further advantages.

5. As described in the text, the mental poker protocol has a flaw. If there are only ten cards, as
soon as Alice sees her hand, she knows from set difference what cards Bob must have. Suggest
an alternative protocol.

We assume that in poker, the objective of the protocol is to prevent a player from knowing
the other’s cards. Assuming only 10 cards, for example card values from 1-10, then from your
hand with 5 cards, you will know the other cards immediately. Here are some approaches to
solving it.

• One way would be to introduce a “fictitious” player Charlie who has his own keypair
and in the enhanced protocol is played by Bob. On being presented with ten cards, Bob
encrypts his selection with his public key and selects additional cards to serve as Charlie’s
hand and encrypts them with Charlie’s public key. Now the protocol proceeds as before
and both Alice and Bob can decrypt their cards. Bob doesn’t know Charlie’s hand so he
can’t deterministically predict Alice’s, and Alice can’t deterministically predict Bob’s.

• Consider a possible protocol with 52 cards, each player gets 5 cards and has no more
information about the other player’s cards except by guessing (at least initially, we make
no assumption about how the game proceeds and poker variations).

Let Alice be player A and Bob be player B. The protocol proceeds by choosing one card
at a time as outlined below:

(a) Player A locks all the unchosen cards with kA. Sends all these cards to player B.

(b) Player B cannot see the cards which are locked. Chooses 2 cards and locks with kB.
Sends the 2 cards to player A.

(c) Player A cannot tell which cards was chosen by B. He selects his card cA. B’s card
is now cB which A unlocks. Sends <cA, cB > to B.

(d) Player B can unlock his card cB. He unlocks cA and sends it back to player A.

(e) Player A can unlock his card cA.

One can either generalize this to 5 cards for each player or proceed with one card at a
time.

9 Tutorial 9

1. Discuss how you would implement the Chinese Wall access control policy in your favorite
operating system.

Consider a Unix-like operating system. The Chinese wall model is history dependent and an
access control decision cannot be made simply by examining the identity of the subject and
the access permissions of the object. It depends on what objects a subject has accessed in the
past. That history would have to be maintained persistently and used in the access control
decision.

One might say that, in effect, accessing an object belonging to a certain dataset results in
an automatic modification to the access control list of all objects that belong to a different
dataset but same conflict class such that the user is denied access to them.

2. Can you fit the Chinese Wall model into the Bell-La Padula framework?

Yes and no. Yes in the sense that the abstract model can be mapped, no in the sense that it’s
hard to implement deterministically with a static set of à priori assignments of need-to-know
compartments. See the paper by Brewer and Nash on the Chinese wall security policy.

3. What would happen if you used the Bell-La Padula model to model confidentiality and the
Biba model to model integrity simultaneously?

BLP and Biba use opposite policies when it comes to writing. BLP allows writes from the
subject’s security level upwards while Biba allows writes from the level downwards. Thus the
only intersection for both is for writes to objects at the subjects security level.

Read Fred Cohen’s paper on Computer Viruses for diagrammatical representation of the
combination of the two policies.

10 Tutorial 10

1. Q1 on page 333 of [Pfl96].

If you didn’t have tranquility in the BLP model, then while reading an object at a lower
clearance level, its clearance level could change (of course in a manner consistent with the
rules in the security policy). And while you are reading it, its clearance could change to
become higher than yours. At the end of the change, you’d be violating the BLP model.
With tranquility, reads and writes are atomic w.r.t to such changes so such kinds of violations
would not occur.

2. Q4 on page 334.

Yes. The relation ⊆ is reflexive, transitive and anti-symmetric. Given any two sets A and B,
the set A ∪B is dominated by both A and B, and the set A ∩B dominates both A and B.

3. Q5. This deals with secrecy because of the clearance labels. You are allowed to read from
an object if your clearance is ≥ the clearance of the object, and the set of your need-to-know
compartments ⊇ the set of the need-to-know compartments of the object.

(a) No (b) Yes (c) No (d) No (e) Yes (f) No.

4. Q6. If signals can be interpreted as sending encoded communication then a process at a higher
clearance level should not be permitted to signal a process at a lower clearance level.

5. Q10. No because the owner of an object can always make the object world readable thereby
permitting information in it to be read by anyone.

11 Tutorial 11

1. Considering the performance of your instructor in his last video taped lecture, what are
his chances of making it as a leading protagonist in an epic Hollywood saga? Shade the
appropriate box considering that the answer is 0/10.

What would be his chances making a cameo appearance in Bollywood as a confused computer
scientist eking a living in a tropical country. Shade the appropriate box assuming that the
answer is 43/100.

2. Suppose that end-to-end (in this case machine to machine) authentication and confidentiality
are required for communication between two hosts. If IPSec is used, show what an IPv4
datagram may look like that leaves one end point for the other. Consider one end point to
be 137.132.90.23 and the other to be 137.132.87.29. Fill in as many fields in the datagram as
you can.

We are only considering tunnel mode. ESP provides both confidentiality and authentication.

First word of IP header
Second word of IP header

Third word of IP header with protocol=ESP
saddr=137.132.90.23
daddr=137.132.87.29

SPI
Sequence #

Tunneled IP datagram with saddr=137.132.90.23, daddr=137.132.87.29 + padding
Authentication data

Discuss at a high level what a selector at host 137.132.90.23 for traffic to 137.132.87.29 looks
like.

At a high level, the selector matches the entire destination and maps it to an SA. So the
selector looks like “137.132.87.29”.

3. Suppose that you only wanted to connect to a service on a remote machine if it’s running as
a specified user, for example, you only want to connect to the ftp daemon on suna.comp if it’s
running as user root. Can you do that easily using IPSec?

No easy way to specify it and no implementations that I know of that will invalidate SA’s at
the destination should ftp restart as different user id.

4. Suppose that on a Unix machine there are three users a, b, and c. User a is cleared at the
“confidential” level, b is cleared at the “secret” level, and c is cleared at the “top secret” level.
User a’s home directory is /home/a, similarly for b and c.

How can you implement the MAC-style BLP policy in this setting using groups and ACLs.
Consider only the SS property of BLP. In other words, c should be able to read everything
under /home/{a,b,c}, b should be able to read everything under /home/{a,b} and so on.

One point to note to have MAC, the files cannot be owned by either of a,b,c to ensure that
that the policy is always applied.

The groups for read access could be: files for c: gc, files for b: gbc, and files for a: gabc.

Membership of groups can be structured as: gc : c, gbc : b, c, gabc : a, b, c. That is the group gc

has only one member c, the group gbc has two members–b and c and so on.

References

[KPS02] Charlie Kaufman, Radia Perlman, and Mike Speciner. Network Security—Private Com-

munication in a Public World. Prentice Hall PTR, 2nd edition, 2002.

[Pfl96] Charles P. Pfleeger. Security in Computing. Prentice Hall, iind edition, 1996.

	Tutorial 1
	Tutorial 2
	Tutorial 3
	Tutorial 4
	Tutorial 5
	Tutorial 6
	Tutorial 7
	Tutorial 8
	Tutorial 9
	Tutorial 10
	Tutorial 11

