
Chapter 6
Error detection and correction

It is possible to use ad-hoc methods to generate check sums over data, but it is probably best to
use standard systems, with guaranteed and well understood properties, such as the CRC1 .

6.1 Cyclic redundancy check codes

The CRC is commonly used to detect errors. One way of considering CRC systems is to treat
the stream of transmitted bits as a representation of a polynomial with coefficients of 1:

�������������
	��������������������

Checksum bits are added to ensure that the final composite stream of bits is divisible by some
other polynomial � ����� . We can transform any stream

�������
into a stream � ����� which is divisible

by � ����� . If there are errors in � ����� , they take the form of a difference bit string � ����� and the
final received bits are � ����� � � ����� .
When the receiver gets a correct stream, it divides it by � ����� and gets no remainder. The question
is: How likely is that � ����� � � ����� will also divide with no remainder?

Single bits? - No a single bit error means that � ����� will have only one term (
�!�"�$#$%

say). If the generator polynomial has
�'&(��)*)+)����

it will never divide evenly.

Multiple bits? - Various generator polynomials are used with different properties.
Must have one factor of the polynomial being

� � �,�
, because this ensures all odd

numbers of bit errors (1,3,5,7...).

1Cyclic Redundancy Code.

59

60 Error detection and correction

Some common generators:

� CRC-12 - �
�����

�
�����

�
	
�
�
���

�
����

� CRC-16 - �
�����

�
�����

�
�����

� CRC-32 - �
	
���

�
�����

�
�
	
�
�
�����

�
�����

�
�����

�
�����

�
�����

�
�
�
���

�
�
���

���
�
�
����

� CRC-CCITT - �
�����

�
�����

�
�����

This seems a complicated way of doing something, but polynomial long division is easy when all
the coefficients are 1. Assume we have a generator � ����� of

� % � ���!� � � ����� ����� �
and the stream�������

:
��� ��������� ���

.

Our final bit stream will be
��������� ������� �
�
�
�
�

. We divide
�������

by � ����� , and the remainder is
appended to

�������
to give us � ����� :

1010.01000
100101)101101011.00000

100101
100001
100101

1001.00
1001.01

1000

We append our remainder to the original string, giving � ������� ��������� ��������� ��� ���
.

When this stream is received, it is divided but now will have no remainder if the stream is received
without errors.

6.1.1 Hardware representation

In the previous section we mentioned that polynomial long division is easy when all the coeffi-
cients are 1. This is because a simple electronic circuit can perform the calculation continuously
on a stream of bits.

The circuit is constructed from exclusive-or gates (XOR gates), and shift registers.

B
A XOR BA

QD

C

S/R

6.1 Cyclic redundancy check codes 61

D C Q A B A XOR B

0 � 0 0 0 0

1 � 1 0 1 1

0 � D 1 0 1

1 � D 1 1 0

Table 6.1: Logic functions for XOR and the shift register.

The XOR gate output is the exclusive-or function of the two input values. The shift register
output Q changes to the input value when there is a rising clock signal.

Simple circuits may be constructed from these two gates which can perform polynomial long
division. In the circuit shown in the figure below, there are five shift registers, corresponding to
a check sequence length of 5 bits, and a polynomial generator of length 6. In this example, the
generator polynomial is 1001012.

QD

C

S/R
QD

C

S/R QD

C

S/R
QD

C

S/R
QD

C

S/R

Data

Clock

XOR
XOR

D1D0 D2 D3 D4

If the hardware system has “all 0s”, and we input the stream 101101011, we get the following
states:

Input data D4 D3 D2 D1 D0 Note

... 0 0 0 0 0 Initial state

1 0 0 0 0 1 First bit

0 0 0 0 1 0 Second bit

1 0 0 1 0 1 Third bit

1 0 1 0 1 1

0 1 0 1 1 0

1 0 1 0 0 0

0 1 0 0 0 0

1 0 0 1 0 0

1 0 1 0 0 1

0 1 0 0 1 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

2The left-most shift register corresponds to the least significant bit of the generator polynomial.

62 Error detection and correction

6.2 Case study: ethernet

Ethernet is the term for the protocol described by ISO standard 8802.3. It is in common use for
networking computers, principally because of its speed and low cost. The maximum size of an
ethernet frame is 1514 bytes3, and a 32-bit FCS is calculated over the full length of the frame.

The FCS used is:

� CRC-32 - �
	
���

�
�����

�
�
	
�
�
�����

�
�����

�
�����

�
�����

�
�����

�
�
�
���

�
�
���

���
�
�
����

On a 10Mbps ethernet, a full length frame is transferred in less than 1 mS, and the polynomial
long division using the above generator polynomial is done efficiently using a 32 stage shift
register found in the ethernet circuitry. This circuitry calculates the FCS as each bit is received,
and is used both for

� constructing a FCS when transmitting, and

� checking the FCS when receiving.

6.3 Error correction

There are various methods used to correct errors. An obvious and simple one is to just detect
the error and then do nothing, assuming that something else will fix it. This method is fine when
something else is able to fix the error, but is of no use if there is no something else!

� In data communication protocols, it is common to just ignore errors that are received,
while acknowledging correct data. If an error is received, the lack of an acknowledgement
eventually leads to a retransmission after some timeout period. This technique is called
ARQ (for Automatic Repeat reQuest).

� With computer memory, we have a large number of extremely small gates storing bits of
information. Radiation (gamma rays, X rays) can cause the gates to change state from time
to time, and modern computer memory corrects these errors.

When we do this second sort of correction, it is called FEC (Forward Error Control) to differen-
tiate it from ARQ systems.

31500 bytes of data, a source and destination address each of six bytes, and a two byte type identifier. The frame
also has a synchronizing header and trailer which is not checked by a CRC.

6.3 Error correction 63

6.3.1 Code types

We can divide error correcting codes (ECC) into continuous and block-based types. Convolu-
tional encodings are used for continuous systems, and the common block-based codes are:

� Hamming codes (for correcting single bit errors),

� Golay codes (for correcting up to three bit errors), and

� Bose-Chaudhuri-Hocquenghem (BCH) codes (for correcting block errors).

Different types of error correcting codes can be combined to produce composite codes. For
example, Reed-Solomon block-codes are often combined with convolutional codes to improve all-
round performance. In this combined setup, the convolutional code corrects randomly distributed
bit errors but not bursts of errors while the Reed-Solomon code corrects the burst errors.

6.3.2 BER and noise

When designing a system, we may have to achieve a specified bit-error-rate (BER). This BER
generally depends on the type of data. For example, video data may require a very low BER
(
����� �

) whereas speech may be acceptable with a BER of
����� 	

. In figure 6.2, we see the raw error
rates for various data storage and communication systems.

System Error rate (errors/bit)

Wiring of internal circuits
�����
�"%

Memory chips
� � �
��	

Hard disk
�������

Optical drives
����� #

Coaxial cable
��� ���

Optical disk (CD)
����� %

Telephone System
����� 	

Table 6.2: Rates of errors for various systems.

In communication systems, BER depends on the signal-to-noise ratio (SNR), as we saw in chapter
4. We can determine the theoretical channel capacity knowing the SNR4 using our equations from
section 4.4.1.

4If the signal to noise is 1000:1, then our probability of bit error is 0.001.

64 Error detection and correction

For example:

� If the BER is
�) � �

, the channel capacity
��� �)����

bits/symbol.

� If the BER is
�) ��� �

, the channel capacity
��� ��)����

bits/symbol.

� If the BER is
�
, the channel capacity

� � �
bits/symbol.

The theoretical maximum channel capacity is quite close to the perfect channel capacity, even if
the BER is high. We have a range of ways of reducing BER on a particular bandwidth channel.
We can increase the signal (power), or reduce the noise (often not possible), or use ECC.

The benefit of error correcting codes is that they can improve the received BER without increasing
the transmitted power. This performance improvement is measured as a system gain.

Example: Consider a system without ECC giving a BER of
�) ��� �

with a S/N ratio of 30dB
(1000:1). If we were to use an ECC codec, we might get the same BER of

�) � � �
with a

S/N ratio of 20dB (100:1). We say that the system gain due to ECC is 10dB (10:1).

6.3.3 A very bad ECC transmission scheme: repetition

An initial scheme to correct transmission errors might be to just repeat bits5.

Data: 0 1 0 0 1 1 1 1 ...
Transmit: 000111000000111111111111...

If we send three identical bits for every bit we wish to transmit, we can then use a voting system
to determine the most likely bit. If our natural BER due to noise was

�) � �
, with three bits we

would achieve a synthetic BER of
��) ��� � �

, but our channel capacity is reduced to about
� �

�)�	 �
bits/symbol.

We can see from this that the rate of transmission using repetition has to approach zero to achieve
more and more reliable transmission. However we know from section 4.4.1 that the theoretical
rate should be equal to or just below the channel capacity

�
. Convolutional and other encodings

can achieve rates of transmission close to the theoretical maximum.

5Note: there is no point in repeating bits twice. you must repeat three times, or 5 times, and then vote to decide
the best value.

6.3 Error correction 65

6.3.4 Hamming

Hamming codes are block-based error correcting codes. Here we derive the inequality used to
determine how many extra hamming bits are needed for an arbitrary bit string.

The hamming distance is a measure of how FAR apart two bit strings are. If we examine two bit
strings, comparing each bit, the hamming distance is just the number of different bits at the same
location in the two bit strings. In the following case, we determine that there are three different
bits, and so the hamming distance is 3.

A: 0 1 0 1 1 1 0 0 0 1 1 1
B: 0 1 1 1 1 1 1 0 0 1 0 1
A XOR B: 0 0 1 0 0 0 1 0 0 0 1 0

If we had two bit strings � and � representing two characters, and the hamming distance between
any two codes was � , we could turn � into � with � single bit errors.

� If we had an encoding scheme (for say ASCII characters) and the minimum hamming
distance between any two codes was � ���

, we could detect � single bit errors6.

� We can correct up to � single bit errors in an encoding scheme if the minimum hamming
distance is

� � ���
.

If we now encode � bits using � extra hamming bits to make a total of � � � � � , we can count
how many correct and incorrect hamming encodings we should have. With � bits we have

���
unique messages - each with � illegal encodings, and:

� � ����� � � � � &
� � � � ����� � � � � &

� � � � � � � & � �
� � � � � � �
	

We solve this inequality, and then choose � , the next integer larger than � .

Example: If we wanted to encode 8 bit values (� ��
) and be able to recognise single bit errors:

� � � ��� � �
	
� � �
	�� �
� �)��
� � �

6Because the code � bits away from a correct code is not in the encoding.

66 Error detection and correction

6.3.5 Reed-Solomon codes

Reed-Solomon codes are block-based error correcting codes which are particularly good at cor-
recting bursts (sequences) of bit errors. They are found in a wide range of digital communications
and storage applications. Reed-Solomon codes are used to correct errors in digital wireless ap-
plications such as wireless LAN systems, and low Earth orbit (LEO) satellite communication
systems.

Reed-Solomon codes belong to the BCH family of block codes, in which the encoder processes
a discrete block of data to produce an encoded block (or codeword).

A Reed-Solomon code is specified as

� RS(n,k) with s-bit symbols.

This means that the encoder takes � data symbols of � bits each and adds parity symbols to make
an � symbol There are � � � parity symbols of � bits each.

A Reed-Solomon decoder can correct up to � symbols that contain errors in a codeword, where

� � � � � �

Example: A popular Reed-Solomon code is RS(255,223) with 8-bit symbols. Each codeword
contains

� � �
code word bytes, of which

� � 	
bytes are data and

	��
bytes are parity. In this

example, � � � � �
, � � � � 	

, and � � �
. When these figures are plugged into the above

equation, we can see that

� � � 	��

and so � � ���

The Reed-Solomon decoder in this example can correct any 16 symbol errors in the codeword.
Said in another way, errors in up to 16 bytes anywhere in the codeword can be automatically
corrected. In the worst case, 16 bit errors may occur, each in a separate symbol (byte) so that the
decoder corrects 16 bit errors. In the best case, 16 complete byte errors occur so that the decoder
corrects 16 x 8 bit errors.

Given a symbol size � , the maximum codeword length � for a Reed-Solomon code is � � ��� � �
.

For example, the maximum length of a code with
�
-bit symbols is

� � �
bytes.

The amount of processing power required to encode and decode Reed-Solomon codes is pro-
portional to the number of parity symbols for each codeword. A large value means that a large
number of errors can be corrected but requires more computation than a small value.

6.3 Error correction 67

6.3.6 Convolutional codes

Convolutional codes are designed to operate continuously and so are especially useful in data
transmission systems. The convolutional encoder operates on a continuous stream of data using
a shift-register to produce a continuous encoded output stream.

The output bit sequence depends on previous sequences of bits. The resultant received bit se-
quence can be examined for the most likely correct output sequence, even when modified with
an arbitrary number of errors.

This encoding technique is computationally inexpensive, and is commonly used in radio modems.
Convolutional codes are effective for correcting some types of bit errors, particularly the type of
error distribution produced by Gaussian noise. However, these codes are not good at correcting
burst errors, which are longer sequences of errors.

Convolutional encoding

The length of shift register used for a convolutional code is known as the constraint length, and
it determines the maximum number of sequential input bits that can affect the output. The code
rate � code is the ratio of the input symbol size to output encoding size:

� code
� �
�

��

��

��

��

�	 QD

C

S/R
Data In

Data Out
S/R

C

D QDQ
S/R

C

Figure 6.1: Sample convolutional encoder.

An example convolutional encoder with � code
� �� , and constraint length

	
is shown in figure

6.1. This coder produces two bits for every single bit of input, and the resultant tree of state
changes repeats after three bits - that is, it only has four distinct states.

68 Error detection and correction

These four distinct states are labelled A, B, C and D in the diagram below7.

C

10D

A

B

01

(000)

(111)

00A

11B

C

11B

01C

D

10

A

D

11B

00A

00

(110)

10

00

11

01

10

01

00

11
01

10

00

11

11

(111)

(001)
(010)

(011)

(100)

(101)

(000)

(001)
(010)

(011)

(100)

(101)
(110)

D

01

10

11

00

D

A

01C
11B

(000)

00

A

C
B

A

D

D

C
B

A

C
B

We normally show this in a trellis diagram, which more clearly shows the repetition of the four
states:

000000

00

00

11 11111111

00

B

A

D

00000000

C

11

1010

01 01

1010
01 010101

01

10

11

11 11 11

10

01 01

101010

If we were to input the sequence 011010, we would get the following trace through the trellis,
with the bit sequence output as 001110110101:

D

B

A

C

10 0101111100

It is easy to see that there are only certain paths through the trellis diagram, and it is possible
to determine the most likely path, even with large numbers of bit errors. A rate

�� convolutional
encoding can often reduce errors by a factor of

��� �
to
�����

.

7Note: In these diagrams, we take the upper path for an input of 0 and the lower path for an input of 1.

6.3 Error correction 69

Viterbi decoding

The Viterbi algorithm tries to find the most likely received data sequence, by keeping track of the
four most likely paths through the trellis. For each path, a running count of the hamming distance
between the received sequence and the path is maintained.

Once we have received the first three codes, we start only selecting those paths with a lower
hamming distance. For each of the nodes A..D, we look at the hamming distances associated
with each of the paths, and only select the one with the lower hamming value. If two merging
paths have the same hamming distance, we choose the upper one.

At any stage in this procedure, we can stop the process, and the most likely received string is the
one with the lowest hamming code.

6.3.7 Case study: ECC encoders

A finite or Galois field is a group of elements with arithmetic operations in which elements be-
have differently than usual. The result of adding two elements from the field is another element
in the field. Reed-Solomon encoders and decoders need to carry out this sort of arithmetic opera-
tions. A number of commercial hardware implementations exist for Reed-Solomon encoding and
decoding. The ICs tend to support a certain amount of programmability (for example, � � � � � ��� � �
where � � �

to
���

symbols).

Example: The COic5127A from Co-Optic Inc, contains a modern high data rate programmable
Reed Solomon encoder that will encode blocks of up to 255 eight bit symbols to provide
corrections of up to 10 errors per code block at data rates up to 320 Mbs. The output code
block will contain the unaltered original data symbols followed by the generated parity
symbols.
The chip supports encoding rates from 0 to 320 Mbs, and comes in a 68 Pin J leaded plastic
chip carrier.

Reed-Solomon codecs can also be implemented in software, the major difficulty being that
general-purpose processors do not support Galois field arithmetic operations. For example, to
implement a Galois field multiply in software requires a test for

�
, two log table look-ups, mod-

ulo add, and anti-log table look-up. However, software implementations can operate reasonably
quickly, and a modern software codec can decode:

Code Rate

� � � � � ��� � ��� � 12 Mb/s

� � � � � ��� � 	�� � 2.7 Mb/s

� � � � � ��� ��� 	 � 1.1 Mb/s

Viterbi decoders are commonly used in conjunction with trellis modulation in most modern high
speed modems.

70 Error detection and correction

6.4 Summary of topics

In this section, we introduced the following topics:

� Error detection
� Error correction

Supplemental questions for chapter 6

1. What is the overriding reason that we use polynomial long-division to calculate an FCS?

2. Calculate the minimum extra bits needed for encoding a 16 bit value, with single-bit error
recovery.

3. Calculate the minimum extra bits needed for encoding a 16 bit value, with two-bit error
recovery.

Further study

� There is a lot of introductory material accessable on the Internet. You may wish to look
more closely at Hamming codes and CRCs.

Chapter 7
Encryption and authentication

Security and Cryptographic systems act to reduce failure of systems due to the following threats:

Interruption - attacking the availability of a service (Denial of Service).

Interception - attacks confidentiality.

Modification - attacks integrity.

Fabrication - attacks authenticity. Note that you may not need to decode a signal to fabricate it
- you might just record and replay it.

Encoding and ciphering systems have been in use for thousands of years. Systems developed
before 1976 had a common identifying characteristic: If you knew how to encipher the plaintext,
you could always decipher it1.

I then told her the key-word, which belonged to no language, and I saw her surprise.
She told me that it was impossible, for she believed herself the only possessor of that
word which she kept in her memory and which she had never written down.

I could have told her the truth - that the same calculation which had served me for
deciphering the manuscript had enabled me to learn the word - but on a caprice it
struck me to tell her that a genie had revealed it to me. This false disclosure fettered
Madame d’Urfé to me. That day I became the master of her soul, and I abused my
power.

Complete Memoirs of Casanova (1757), quote.

You can read this at http://hot.ee/memoirs/casanova/gutenberg.htm. We call these systems sym-
metric key systems.

1And vice-versa of course.

71

72 Encryption and authentication

7.1 Symmetric key systems

X
PKi[P]P

X
(Plaintext)(Plaintext)

KiKi

Figure 7.1: Symmetric key model

Symmetric key systems are generally considered insecure, due to the difficulty in distributing
keys. We can model the use of a symmetric key system as in Figure 7.1.

7.1.1 Simple ciphers - transposition

Transposition ciphers just re-order the letters of the original message. This is known as an ana-
gram:

� parliament is an anagram of partial men

� Eleven plus two is an anagram of Twelve plus one

Perhaps you would like to see if you can unscramble “age prison”, or “try open”.

You can detect a transposition cipher if you know the frequencies of the letters, and letter pairs. If
the frequency of single letters in ciphertext is correct, but the frequencies of letter pairs is wrong,
then the cipher may be a transposition.

This sort of analysis can also assist in unscrambling a transposition ciphertext, by arranging the
letters in their letter pairs.

7.1.2 Simple ciphers - substitution

Substitution cipher systems encode the input stream using a substitution rule. The Cæsar cipher
from Section 1.4.1 is an example of a simple substitution cipher system, but it can be cracked in
at most 25 attempts by just trying each of the 25 values in the keyspace.

If the mapping was more randomly chosen as in Table 7.1, it is called a monoalpha-
betic substitution cipher, and the keyspace for encoding

� �
letters would be

� ��� � � �
� ��	 � � � � � � ��� � � � ��� ��� ��� ��	 ��� �
��	 � � � � � � � �

. If we could decrypt
� � ����� � � ���

messages in a second,
then the average time to find a solution would be about

� � 	�� � � � � � � ��� � � ��� �
years!

7.1 Symmetric key systems 73

Code Encoding

A Q

B V

C X

D W

... ...

Table 7.1: Monalphabetic substitution cipher

We might be lulled into a sense of security by these big numbers, but of course this sort of cipher
can be subject to frequency analysis. In the English language, the most common letters are: "E
T A O N I S H R D L U..." (from most to least common), and we may use the frequency of the
encrypted data to make good guesses at the original plaintext. We may also look for digrams and
trigrams (th, the). After measuring the frequencies of each character, digram and trigram in the
monoalphabetic substitution cipher, we associate the most common ones with our ETAO letters,
and then look at the resultant messages. In addition, known text (if any) may be used.

If the key is large (say the same length as the text) then we call it a one-time pad.

The Vigenère cipher is a polyalphabetic substitution cipher invented around 1520. We use an
encoding/decoding sheet, called a tableau as seen in Table 7.2, and a keyword or key sequence.

A B C D E F G H ...

A A B C D E F G H ...

B B C D E F G H I ...

C C D E F G H I J ...

D D E F G H I J K ...

E E F G H I J K L ...

F F G H I J K L M ...

G G H I J K L M N ...

H H I J K L M N O ...

...

Table 7.2: Vigenère tableau

If our keyword was BAD, then encoding HAD A FEED would result in

Key B A D B A D B A

Text H A D A F E E D

Cipher I A G B F H F D

If we can discover the length of the repeated key (in this case 3), and the text is long enough,
we can just consider the cipher text to be a group of interleaved monoalphabetic substitution

74 Encryption and authentication

ciphers and solve accordingly. The index of coincidence is the probability that two randomly
chosen letters from the cipher will be the same, and it can help us discover the length of a key,
particularly when the key is small:

� � � �� � � � � �
�$%� �
���

�
�
�"�
�
� � �

where
�
�

is the frequency of the occurences of symbol � . Figure 9-4 in the textbook shows the
indices of coincidence for random english text for different periods.

Ifwecandiscoverthelengthoftherepeatedkeyandthetextislongenoughwecanjustconsidertheciphertexttobeagroupofinterle
eaveIfwecandiscoverthelengthoftherepeatedkeyandthetextislongenoughwecanjustconsidertheciphertexttobeagroupofint
---x-------------x--------xx----x--x----------x------------------

In the above example, there is some evidence that the text is shifted by 4 or 5. We can directly
calculate an index of coincidence factor for a shift of an encoded string by 1,2,3, and the value
calculated will be higher when the shift is correct.

The ideas here were developed by William F. Friedman in his Ph.D. and in [Fri]. Friedman
also coined the words “cryptanalysis” and “cryptology”. Friedman worked on the solution of
German code systems during the first (1914-1918) world war, and later became a world-renowned
cryptologist.

7.1.3 DES - Data Encryption Standard

4:22:4 Permutation

(3,4,2,1)

Figure 7.2: An S-box

The S-box (Substitution-Box) is a hardware device which encodes n bit numbers to other n bit
numbers and can be represented by a permutation. In Figure 7.2 we see a binary S-box. A P-box
is just a simple permutation box. If you use an S-box and a P-box at once, you have a product
cipher which is generally harder to decode, especially if the P-box has differing numbers of input
and output lines (1 to many, 1 to 1 or many to 1).

DES was first proposed by IBM using 128 bit keys, but its security was reduced by NSA (the
National Security Agency) to a 56 bit key (presumably so they could decode it in a reasonable
length of time). At 1ms/GUESS. It would take

��� # �
years to solve 128 bit key encryption. The

DES Standard gives a business level of safety, and is a product cipher.

7.1 Symmetric key systems 75

The (shared) 56 bit key is used to generate 16 subkeys, which each control a sequenced P-box
or S-box stage. DES works on 64 bit messages called blocks. If you intercept the key, you can
decode the message. However, there are about

� � � �
keys.

+ f

+ f

+ f

+ f

+ f

+ f

K2

K1

K0

K1

K0

K2

l0 r0

l0 r0

l1 r1

l2 r2

l3 r3

l3 r3

l2 r2

l1 r1

Figure 7.3: The Fiestel structure

Each of the 16 stages (rounds) of DES uses a Feistel structure which encrypts a 64 bit value into
another 64 bit value using a 48 bit key derived from the original 56 bit key. In Figure 7.3, we see
the symmetrical nature of DES encryption and decryption.

DES

Ctext

msg

Electronic Code Book

DES

Ctext

msg

DES

Ctext

msg

Cipher Block Chaining

Initial vector

Figure 7.4: ECB and CBC

There are several modes of operation in which DES can operate, some of them better than others.
The US government specifically recommends not using the weakest simplest mode for messages,
the Electronic Codebook (ECB) mode. They recommend the stronger and more complex Cipher
Feedback (CFB) or Cipher Block Chaining (CBC) modes as seen in Figure 7.4.

76 Encryption and authentication

The CBC mode XORs the next 64-bit block with the result of the previous 64-bit encryption,
and is more difficult to attack. DES is available as a library on both UNIX and Microsoft-based
systems. There is typically a des.h file, which must be included in any C source using the DES
library:

#include “des.h”
//
// - Your calls

After initialization of the DES engine, the library provides a system call which can both encrypt
and decrypt:

int des_cbc_encrypt(clear, cipher, schedule, encrypt)

where the encrypt parameter determines if we are to encipher or decipher. The schedule contains
the secret DES key.

7.1.4 Case study: Amoeba capabilities

All Amoeba objects are identified by a capability string which is encrypted using DES encryption.
A capability is long enough so that you can’t just make them up.

If you have the string, you have whatever the capability allows you. If you want to give someone
some access to a file, you can give them the capability string. They place this in their directory,
and can see the file.

All AMOEBA objects are named/identified by capabilities with four fields:

object

identify the object
the server uses to

Internal number which

Identifies which
operations are

(48 bits) (24 bits) (8 bits) (48 bits)

Protects against forging

allowed
which manages the
Identifies the server

CheckfieldRightsObject IDServer Port

To further prevent tampering, the capability is DES encrypted. The resultant bit stream may be
used directly, or converted to and from an ASCII string with the a2c and c2a commands.

7.2 Public key systems 77

7.2 Public key systems

In 1976 Diffie and Hellman published the paper “New Directions in Cryptography” [DH76],
which first introduced the idea of public key cryptography. Public key cryptography relies on the
use of enciphering functions which are not realistically invertible unless you have a deciphering
key. For example, we have the discrete logarithm problem in which it is relatively easy to calcu-
late � � ��� mod � given � , � and � , but difficult to calculate � in the same equation, given � , �
and � .

7.2.1 Diffie-Hellman key agreement

The Diffie-Hellman paper introduced a new technique which allowed two separated users to
create and share a secret key. A third party listening to all communications between the two
separated users is not realistically able to calculate the shared key.

g mod p

p,g

b
a

p,g,a

b

Ted

BobAlice
p,g,b

ag mod p

g mod p
g mod p

bg mod pag mod p

Figure 7.5: Diffie-Hellman key exchange protocol

Consider the participants in the system in Figure 7.5. The knowledge held by each of the partic-
ipants is different.

� All participants know two system parameters � - a large prime number, and � - an integer
less than � . There are certain constraints on � to ensure that the system is not feasibly
invertible.

� Alice and Bob2 each have a secret value (Alice has � and Bob has �) which they do not
divulge to anyone. Alice and Bob each calculate and exchange a public key (��� mod � for
Alice and ��� mod � for Bob).

� Ted knows � , � , ��� mod � and ��� mod � , but neither � nor � .

Both Alice and Bob can now calculate the value � ��� mod � .

2It is common to use the names Bob, Ted, Carol and Alice (from the movie of the same name) when discussing
cryptosystems.

78 Encryption and authentication

1. Alice calculates
� ��� mod � � � mod � � � � � � � mod � .

2. Bob calculates
� ��� mod � � � mod � � � � � � � mod � .

And of course
� ��� � � mod � � � � � � � mod � � � ��� mod � - our shared key.

Ted has a much more difficult problem. It is difficult to calculate � � � mod � without knowing
either � or � . The algorithmic run-time of the (so-far best) algorithm for doing this is in

� ������� 	��
	�� 	 �

where is small, but � �
, and � is the number of bits in the number. By contrast, the enciphering

and deciphering process may be done in
� � � � :

Bit size Enciphering Discrete logarithm solution

10 10 23

100 100 1,386,282

1,000 1,000 612,700,000,000,000,000,000,000

10,000 10,000 722,600,000

Note that we can calculate expressions like ��� mod � relatively easily, even when � ,
�

and �
are large. The following code shows an algorithm3 which iterates to a solution, and never has to
calculate a larger number than � � :

c := 1; { attempting to calculate mod(��� ,p) }
x := 0;
while x<>Q do

begin
x := x+1;
c := mod(c*g,p)

end;
{ Now c contains mod (��� ,p) }

7.2.2 Encryption

(Plaintext)
XX

P

K1 (K1[K2[P]]=P)
and also
(K2[K1[P]]=P)

K1[P]

K2

P

Figure 7.6: Encryption using public keys

Public key schemes may be used for encrypting data directly. In Figure 7.6, a transmitter encrypts
the message using the public key of the recipient. Since the private key may not be generated
easily from the public key, the recipient is reasonably sure that no-one else can decrypt the data.

3Stephen Glasby points out that this is a very slow algorithm. Perhaps you would like to consider how it could
be improved?

7.2 Public key systems 79

7.2.3 Authentication

K2

X
P

K1

PK1[J2[P]]

J1J2

XXX

Figure 7.7: Authentication using public keys

We can use public key schemes to provide authentication. If one machine wants to authentically
transmit information, it encodes using both its private key and the recipient’s public key as seen
in Figure 7.7. The second machine uses the others public key and its own private key to decode.

7.2.4 RSA (Rivest, Shamir, Adelman)

This public key system relies on the difficult problem of trying to find the complete factorization
of a large composite4 integer whose prime factors5 are not known. Two RSA-encrypted messages
have been cracked:

� The inventors of RSA published a message encrypted with a 129-digits (430 bits) RSA
public key, and offered $100 to the first person who could decrypt the message. In 1994, an
international team coordinated by Paul Leyland, Derek Atkins, Arjen Lenstra, and Michael
Graff successfully factored this public key and recovered the plaintext. The message read:
THE MAGIC WORDS ARE SQUEAMISH OSSIFRAGE.
About 1600 machines took part in the crack, and the project took about eight months and
approximately 5000 MIPS-years of computing time.

� A year later, a 384-bit PGP key was cracked. A team consisting of Alec Muffett, Paul Ley-
land, Arjen Lenstra and Jim Gillogly managed to use enough computation power (approx-
imately 1300 MIPS-years) to factor the key in three months. It was then used to decrypt a
publicly-available message encrypted with that key.

Note that these efforts each only cracked a single RSA key. If you happen to be able to factor
the following number, please tell Hugh - we can split US$200,000! (That is US$150,000 for me,
US$50,000 for you)

2519590847565789349402718324004839857142928212620403202777713783604366202070759555626401852588078440691829064124951508
2189298559149176184502808489120072844992687392807287776735971418347270261896375014971824691165077613379859095700097330
4597488084284017974291006424586918171951187461215151726546322822168699875491824224336372590851418654620435767984233871
8477444792073993423658482382428119816381501067481045166037730605620161967625613384414360383390441495263443219011465754
4454178424020924616515723350778707749817125772467962926386356373289912154831438167899885040445364023527381951378636564
391212010397122822120720357

4An integer larger than 1 is called composite if it has at least one divisor larger than 1.
5The Fundamental Theorem of Arithmetic states that any integer � (greater than 0) may be expressed uniquely

as the product of prime numbers.

80 Encryption and authentication

7.2.5 RSA coding algorithms

Below are outlined the four processes needed for RSA encryption:

1. Creating a public key

2. Creating a secret key

3. Encrypting messages

4. Decoding messages

To create public key ��� :

1. Select two different large primes � and � .

2. Assign
� � � � � � � � � � � �

.

3. Choose � relative prime to
�

. (This must satisfy condition for � � given later)

4. Assign
� � ����� .

5. ��� is
�

concatenated with � .

To create private (secret) key � � :

1. Choose 	 : 	
� � mod
� � �

.

2. � � is
�

concatenated with 	 .

We encode plain text � by:

1. Pretend � is a number.

2. Calculate � ��� mod
�

.

To decode
�

back to � :

1. Calculate � � ���
mod

�
.

7.3 Uses of encryption 81

7.2.6 Testing large numbers for primality

RSA requires us to generate large prime numbers, but there is no algorithm for constructing or
checking arbitrarily large prime numbers. Instead we use statistical testing methods to determine
primality.

Quick Quiz! Is
� ����� � � � � ��� ��� ��� � � ��� 	 � 	 ��	 � 	���� � ��� ��� � � ��� � � ��� � � �

prime6?

After choosing a large random (odd) number � , we can quickly see if � is divisible by
�
,
	

and
so on (say all primes up to

��� ���
). If our number � passes this, then we can perform some sort of

statistical primality test. For example, the Lehmann test:

1. Choose a random number � (for witness) less than �

2. If �
� � �
����� ����
	 � mod � then � is not prime

3. If �
� � �
����� � �
	 � mod � then the likelihood is less than

�)��
that � is not prime

Repeat the test over and over, say � times. The likelihood of a false positive will be less than
���� .

Other tests, such as the Rabin-Miller test may converge more quickly.

7.2.7 Case study: PGP

PGP (Pretty Good Privacy) is a public key encryption package to protect E-mail and data files.
It lets you communicate securely with people you’ve never met, with no secure channels needed
for prior exchange of keys. PGP can be used to append digital signatures to messages, as well as
encrypt the messages, or do both. It uses various schemes including patented ones like IDEA and
RSA. The patent on IDEA allows non-commercial distribution, and the RSA patent has expired.
However there are also commercial versions of PGP. PGP can use, for example, 2048 bit primes,
and it is considered unlikely that PGP with this level of encryption can be broken.

7.3 Uses of encryption

As we have seen, encryption may be used in several ways, summarized in the following list:

1. Generating encrypted passwords, using a (one-way) function.

2. Checking the integrity of a message, by appending a digital signature.

3. Checking the authenticity of a message.

4. Encrypting timestamps, along with messages to prevent replay attacks.

5. Exchanging a key.

6Note that this is only a 33 digit number, and we typically use prime numbers with hundreds of digits.

82 Encryption and authentication

7.4 Summary of topics

In this section, we introduced the following topics:

� Symmetric key systems
� Asymmetric key systems

Supplemental questions for chapter 7

1. Differentiate between the block and stream ciphers.

2. In DES, which components of the hardware cause confusion, and which diffusion?

3. RESEARCH: Write java code that mirrors the operation of the DES � function.

4. We have DES and 3DES. Why do we not have 2DES?

5. Briefly characterize each of Blowfish, SHA, MD5, RC4, RC5, AES.

6. What is the timing attack on RSA?

Further study

� Diffie-Hellman paper [DH76] at
http://citeseer.nj.nec.com/340126.html.

� Textbook, section 9.

