Chapter 7

Lecture 7 - Encryption

This session

- Public key systems
 - Sharing keys - Diffie-Hellman
 - Asymmetric encryption
 - RSA
Public key systems

✓ In 1976 Diffie and Hellman published the paper “New Directions in Cryptography”, which first introduced the idea of public key cryptography.

✓ Public key cryptography relies on the use of enciphering functions which are not realistically invertible unless you have a deciphering key.

 Easy to do one way - hard to do the other way.

CS3235 - Hugh Anderson's notes. Page number: 354

Not realistically invertible...

✓ The discrete logarithm problem:

 ✓ easy to calculate $n = g^k \text{ mod } p$ given g, k and p,
 ✓ hard to calculate k in the same equation, given g, n and p.

CS3235 - Hugh Anderson's notes. Page number: 355
Diffie-Hellman key agreement

Two separated users create and share a secret key. A third party is not realistically able to calculate the shared key.

\[p, g, a \quad g^a \mod p \rightarrow g^b \mod p \]
\[p, g, b \quad g^b \mod p \rightarrow g^a \mod p \]

Ted

Knowledge different

- All participants know two system parameters \(p \), and \(g \)
- Alice and Bob each have a secret value (Alice has \(a \) and Bob has \(b \))
- Alice and Bob each calculate and exchange a public key (\(g^a \mod p \) for Alice and \(g^b \mod p \) for Bob).
- Ted knows \(g, p, g^a \mod p \) and \(g^b \mod p \), but not \(a \) or \(b \).
Diffie-Hellman key agreement

Both Alice and Bob can now calculate the value $g^{ab} \mod p$.

1. Alice calculates $(g^b \mod p)^a \mod p = (g^b)^a \mod p$.

2. Bob calculates $(g^a \mod p)^b \mod p = (g^a)^b \mod p$.

And of course $(g^b)^a \mod p = (g^a)^b \mod p = g^{ab} \mod p$ which is the shared key.

Ted has a much more difficult problem. It is difficult to calculate $g^{ab} \mod p$ without knowing either a or b. The algorithmic run-time of the (so-far best) algorithm for doing this is in

$$O(e^{c\sqrt{\log r}})$$

where c is small, but ≥ 1, and r is the number of bits in the number.
Diffie-Hellman key agreement

By contrast, the enciphering and deciphering process may be done in $O(r)$:

<table>
<thead>
<tr>
<th>Bit size</th>
<th>Enciphering</th>
<th>Discrete logarithm solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>1,386,282</td>
</tr>
<tr>
<td>1,000</td>
<td>1,000</td>
<td>612,700,000,000,000,000,000</td>
</tr>
</tbody>
</table>

Use of Diffie-Hellman key agreement

✔ To share a DES key...
This session

- Public key systems
 - Sharing keys - Diffie-Hellman
 - Asymmetric encryption
 - RSA

Uses of asymmetric encryption

1. Generating encrypted passwords with 1-way functions
2. Checking integrity by appending digital signature
3. Checking the authenticity of a message.
4. Encrypting timestamps with messages to prevent replay attacks.
5. Exchanging a key.
Asymmetric encryption

✔ Participants each have private and public keys
✔ Keys cannot be derived from each other

(Plaintext) P

$K_1[P]$ (K1[K2[P]] = P)

and also

(K1[K2[P]] = P)

✔ K_1 is private key for left participant, K_2 is her public key.
Authentication

✔ K1 is private key for left participant, K2 is her public key.

✔ J1 is private key for right participant, J2 is his public key.

This session

- Public key systems
 - Sharing keys - Diffie-Hellman
 * Asymmetric encryption
 * RSA
RSA (Rivest, Shamir, Adelman)

This public key system relies on the difficult problem of trying to find the complete factorization of a large composite15 integer whose prime factors16 are not known.

15An integer larger than 1 is called composite if it has at least one divisor larger than 1.

16The Fundamental Theorem of Arithmetic states that any integer \(N\) (greater than 0) may be expressed uniquely as the product of prime numbers.

RSA hacks

Two RSA-encrypted messages have been cracked:

- The inventors of RSA published a 129-digits (430 bits) RSA public key. In 1994, it was factored with 5000 MIPS-years of computing time.

- A year later, a 384-bit PGP key was cracked. It needed 1300 MIPS-years to factor the key in three months.

Note that these efforts each only cracked a single RSA key.
RSA hacks

If you happen to be able to factor the following number, please tell Hugh - we can split US$200,00017!

```
251959084756578934940271832400483985714292821262040032027777113783604366202
0707595556264018525880784406918290641249515082189298559149176184502808489
120072844992687392807287776735971418347270261896350149718246911650776133
7985909570009733045974880842840179742910064245869181719511874612151517265
4632282216869987549182422433637259085141865462043576798423387184774447920
7399342365848238242811981638150106748104516603773060562016196762561338441
43603833904414952634432190111465754445417842402092461651572335077870774981
7125772467962926386356373289912154831438167898985040445364023527381951378
636564391212010397122822120720357
```

17US$150,000 for me, US$50,000 for you...

RSA coding algorithms

Below are outlined the four processes needed for RSA encryption:

1. Creating a **public** key
2. Creating a **secret** key
3. **Encrypting** messages
4. **Decoding** messages
To create public key K_p

1. Select two different large primes P and Q.

2. Assign $x = (P - 1)(Q - 1)$. (Does this ring a bell?)

3. Choose E relative prime to x. (This must satisfy condition for K_s given later)

4. Assign $N = P * Q$.

5. K_p is N concatenated with E.

To create private (secret) key K_s

1. Choose D: $D * E \mod x = 1$.

 (a) (i.e. multiplicative inverses)
 (b) another way: $DE = k(P - 1)(Q - 1) + 1$

2. K_s is N concatenated with D.
To encode plain text \(m \)

1. Pretend \(m \) is a number.

2. Calculate \(c = m^E \mod N \).

To decode \(c \) back to \(m \)

1. Calculate \(m = c^D \mod N \).

2.WHY?....
...Why?...

c^D \mod N = m^{ED} \mod N
= m^{k(P-1)(Q-1)+1} \mod PQ
= m * m^{k(P-1)(Q-1)} \mod PQ
= m

- \text{so} \quad m^{P-1} \mod P = 1, \text{ SO } (m^{(P-1)})^{k(Q-1)} \mod P = 1

- \text{and so (tutorial)} \quad (m^{(P-1)})^{k(Q-1)} \mod PQ = 1.

RSA code

```perl
#!/usr/bin/perl -sp
s/\W//g;

and then

- echo "squeamish ossifrage" | ./rsa.perl -k=10001 -n=1967cb529 > msg.rsa

- ./rsa.perl -d -k=ac363601 -n=1967cb529 < msg.rsa
```