Chapter 7
Lecture 7 - Encryption

Public key systems

✔ In 1976 Diffie and Hellman published the paper “New Directions in Cryptography”, which first introduced the idea of public key cryptography.

✔ Public key cryptography relies on the use of enciphering functions which are not realistically invertible unless you have a deciphering key.

Easy to do one way - hard to do the other way.

This session

- Public key systems
 - Sharing keys - Diffie-Hellman
 - Asymmetric encryption
 - RSA

Not realistically invertible...

✔ The discrete logarithm problem:
 ✔ easy to calculate \(n = g^k \mod p \) given \(g, k \) and \(p \),
 ✔ hard to calculate \(k \) in the same equation, given \(g, n \) and \(p \).
Diffie-Hellman key agreement

Two separated users create and share a secret key. A third party is not realistically able to calculate the shared key.

<table>
<thead>
<tr>
<th>Alice</th>
<th>[g^{a \mod p}]</th>
<th>Bob</th>
<th>[g^{b \mod p}]</th>
<th>Ted</th>
<th>[g^{ab \mod p}]</th>
</tr>
</thead>
</table>

All participants know two system parameters \(p \), and \(g \).

- Alice and Bob each have a secret value (Alice has \(a \) and Bob has \(b \)).
- Alice and Bob each calculate and exchange a public key (\(g^a \mod p \) for Alice and \(g^b \mod p \) for Bob).
- Ted knows \(g, p, g^a \mod p \) and \(g^b \mod p \), but not \(a \) or \(b \).

Both Alice and Bob can now calculate the value \(g^{ab \mod p} \).

1. Alice calculates \((g^b \mod p)^a \mod p = (g^a)^a \mod p \).
2. Bob calculates \((g^a \mod p)^b \mod p = (g^b)^b \mod p \).

And of course \((g^b)^a \mod p = (g^a)^b \mod p = g^{ab \mod p} \) which is the shared key.

Ted has a much more difficult problem. It is difficult to calculate \(g^{ab \mod p} \) without knowing either \(a \) or \(b \). The algorithmic run-time of the (so-far best) algorithm for doing this is in

\[
O(e^{c\sqrt{r\log r}})
\]

where \(c \) is small, but \(\geq 1 \), and \(r \) is the number of bits in the number.
Diffie-Hellman key agreement

By contrast, the enciphering and deciphering process may be done in $O(r)$:

<table>
<thead>
<tr>
<th>Bit size</th>
<th>Enciphering</th>
<th>Discrete logarithm solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>1,386,282</td>
</tr>
<tr>
<td>1,000</td>
<td>1,000</td>
<td>612,700,000,000,000,000,000</td>
</tr>
</tbody>
</table>

Use of Diffie-Hellman key agreement

✔ To share a DES key...

This session

- Public key systems
 - Sharing keys - Diffie-Hellman
 * Asymmetric encryption
 * RSA

Uses of asymmetric encryption

1. Generating encrypted passwords with 1-way functions
2. Checking integrity by appending digital signature
3. Checking the authenticity of a message.
4. Encrypting timestamps with messages to prevent replay attacks.
5. Exchanging a key.
Asymmetric encryption

- Participants each have private and public keys
- Keys cannot be derived from each other

PK1[K2[P]] = P
and also
K1[P] = P

K1 is private key for left participant, K2 is her public key.

Authentication

K1[J2[P]] = P

J1 is private key for right participant, J2 is his public key.

This session

- Public key systems
 - Sharing keys - Diffie-Hellman
 * Asymmetric encryption
 * RSA
RSA (Rivest, Shamir, Adelman)

This public key system relies on the difficult problem of trying to find the complete factorization of a large composite15 integer whose prime factors16 are not known.

15An integer larger than 1 is called composite if it has at least one divisor larger than 1.
16The Fundamental Theorem of Arithmetic states that any integer N (greater than 0) may be expressed uniquely as the product of prime numbers.

RSA hacks

Two RSA-encrypted messages have been cracked:

- The inventors of RSA published a 129-digits (430 bits) RSA public key. In 1994, it was factored with 5000 MIPS-years of computing time.

- A year later, a 384-bit PGP key was cracked. It needed 1300 MIPS-years to factor the key in three months.

Note that these efforts each only cracked a single RSA key.

RSA coding algorithms

Below are outlined the four processes needed for RSA encryption:

1. Creating a public key
2. Creating a secret key
3. Encrypting messages
4. Decoding messages

...
To create public key K_p

1. Select two different large primes P and Q.
2. Assign $x = (P - 1)(Q - 1)$. (Does this ring a bell?)
3. Choose E relative prime to x. (This must satisfy condition for K_s given later)
4. Assign $N = P * Q$.
5. K_p is N concatenated with E.

To create private (secret) key K_s

1. Choose $D: D * E \ mod \ x = 1$.
 (a) (i.e. multiplicative inverses)
 (b) another way: $DE = k(P - 1)(Q - 1) + 1$
2. K_s is N concatenated with D.

To encode plain text m

1. Pretend m is a number.
2. Calculate $c = m^E \ mod \ N$.

To decode c back to m

1. Calculate $m = c^D \ mod \ N$.
2.WHY?....
...Why?...

\[c^D \mod N = m^{kD} \mod N = m^{k(P-1)(Q-1)+1} \mod PQ = m * m^{k(P-1)(Q-1)} \mod PQ = m \]

- \(m^{P-1} \mod P = 1 \), so \(m^{\varphi(P-1)} \mod P = 1 \)

- \(m^{Q-1} \mod Q = 1 \), and so (tutorial) \((m^{P-1})^{k(Q-1)} \mod PQ = 1 \).

and then

- `echo "squeamish ossifrage" | ./rsa.perl -k=10001 -n=1967cb529 > msg.rsa`

- `./rsa.perl -d -k=ac363601 -n=1967cb529 < msg.rsa`