1 (To be handed in). In class, we looked at a three-way system for transferring a message from A to B, which had the interesting property that neither A nor B had to reveal their keys. Given a message \(m \), the first message (from A to B) would be \(K_A(m) \), the second message (from B to A) would be \(K_B(K_A(m)) \), and the third message (from A to B) would be \(K_A^{-1}(K_B(K_A(m))) = K_B(m) \). B could then calculate \(K_B^{-1}(K_b(m)) = m \), and retrieve the message. If both A to B used a random byte sequence for their key, and then used the XOR function to both encrypt and decrypt the message, then surely this is a perfect technique for transferring data... right? (Neither participant has to reveal a key, and a third party cannot decrypt/unlock the message).

Well... actually... it is not a good scheme. Explain exactly why it is not a good scheme.

Please come to the tutorial ready to present your answers to these questions as well:

2 (Do not hand in). Fields and Groups:

(a) Why are the Integers using addition and multiplication not a field?
(b) Why are the Natural numbers using addition not a group?
(c) Show the tables for addition and multiplication for the positive integers mod 5 (\(Z_5 \)) similar to the table on page 23 of the book.

3 (Do not hand in). Fields and Groups:

(a) Consider the table below, Hugh’s loony three-valued logic. Does \(\{\circ, \perp, \top, \nabla\} \) form a group? If so, what is the \(\nabla \) identity?

<table>
<thead>
<tr>
<th></th>
<th>(\circ)</th>
<th>(\nabla)</th>
<th>(\top)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nabla)</td>
<td>(\perp)</td>
<td>(\circ)</td>
<td>(\perp)</td>
</tr>
<tr>
<td>(\top)</td>
<td>(\perp)</td>
<td>(\top)</td>
<td>(\nabla)</td>
</tr>
</tbody>
</table>

(b) The other operator for loony logic is given below. Does \(\{\circ, \perp, \top, \nabla, \Delta\} \) form a field? If so, prove it by renaming and properties of fields.

<table>
<thead>
<tr>
<th></th>
<th>(\circ)</th>
<th>(\perp)</th>
<th>(\top)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta)</td>
<td>(\circ)</td>
<td>(\perp)</td>
<td>(\top)</td>
</tr>
<tr>
<td>(\nabla)</td>
<td>(\perp)</td>
<td>(\top)</td>
<td>(\nabla)</td>
</tr>
<tr>
<td>(\perp)</td>
<td>(\nabla)</td>
<td>(\perp)</td>
<td>(\perp)</td>
</tr>
<tr>
<td>(\top)</td>
<td>(\perp)</td>
<td>(\top)</td>
<td>(\nabla)</td>
</tr>
</tbody>
</table>

4 (Do not hand in). Describe an operation \(\bullet \) which forms a group with the Integers from 3 to 6. Define the operation, and give the identity, and the inverse mappings.