
Department of Computer Science
National University of Singapore

CS3249 User Interface Development
AY2013-14 Semester 2

Lab 1: Ubuntu Linux and MyEditor

Objectives

• Learn to use Linux command in a terrminal.

• Learn to edit, compile and run a Qt program.

• Learn to add menu items and tool bar items to a GUI program.

Part 0. First Taste of Linux Commands
This part illustrates several frequently used Linux command in command-line mode.

1. Look for the Launcher located on the left of Ubuntu desktop (Figure 1).

2. Launch the GNOME terminal by single clicking its icon in the launcher.

3. In the terminal, you should see a command prompt something like

stu001-~$

4. The GNOME terminal runs a program called bash (Bourne-Again Shell) that
interprets the commands that you type and executes the corresponding programs.
Examine the following commands by typing them one at a time followed by the
Enter key:

pwd

ls

ls -l

ls -a

ls Pictures

ls .

man ls

• pwd displays the name of the current directory.

• ls lists the files and sub-directories in the current directory. The ls command can
be followed by options or arguments. For example, the option -l means list details
of files and sub-directories, and -a means list hidden files, which are files that
begin with the character '.'. The argument Pictures refers to the subdirectory
called Pictures and . refers to the current directory.

• man stands for manual. It is used to display manual information about commands.
For example, “man ls” displays manual of ls.

1

5. Enter the following command at the command prompt $ (you don't need to type the
first $, but you do need to type the second $ just before PATH):

$ echo $PATH

It displays the value of the environment variable PATH, which contains a list of
directories that bash searches for the program that corresponds to the command that
you type. By default, the current directory . is not listed in PATH. This is inconvenient
because to run a program in the current directory, say test, you need to type ./test
instead of just test.

6. To add the current directory to PATH, do the following:

a. Look for Home Folder in the Launcher and launch it.

b. Click the Home icon on the left panel to display the Home folder (i.e., directory).

c. In Home Folder, select the menu item View  Show Hidden Files.

d. Look for the file called .bashrc and open it by double-clicking its icon.

e. At the end of .bashrc, enter the following line

PATH=$PATH:.

This will append the current directory to PATH.

f. If you prefer a shorter command prompt, you can also change it in .bashrc. For
example, the following line

PS1="\u-\w\$ "

sets the command prompt PS1 as the string that contains your login name (\u)
followed by -, the current working director (\w), and $.

g. Save .bashrc and exit the editor.

h. Close the GNOME terminal and re-launch it.

i. Now, if you enter the command echo $PATH, you should see the current directory
listed in PATH.

j. In Home Folder, deselect View  Show Hidden Files to hide the hidden files.

Part 1. First Taste of Ubuntu
This part gives you a first taste of using Ubuntu.

1. In Home Folder, click the Home icon on the left panel or in the menu bar to go to your
home directory.

2. With the cursor in the Home Folder, press the right mouse button and create a new
folder with your name, e.g., myname.

3. Create a folder called myeditor under myname. This is your working folder.

4. Double click the icon for myeditor to open your working folder.

5. Download myeditor.zip from the course website into your working folder.

6. Double click myeditor.zip to open it. You should see the following files:
example.txt, main.cpp, myeditor.pdf, myeditor.qrc, MyEditor.h,
MyEditor.cpp. You should also see a folder called images with several images in it.

2

Drag the files and folders into your working folder.

7. Double click myeditor.qrc to open it in the default editor. Two editors have been
installed: medit and gedit. medit has block indent and block comment which are
convenient for indenting and commenting a block of codes, whereas gedit's search
feature is more convenient to use. You can change the default editor by right-clicking
on the file icon, selecting the Properties menu item in the pop-up menu, and change
the default editor in the Open With tab.

8. Similarly, examine MyEditor.h, MyEditor.cpp, and main.cpp.

9. If you find that your desktop is getting cluttered, no worry. Ubuntu comes with not
just one but four workspaces! Click the workspace icon in the Launcher (Figure 1)
and you should see the four workspaces. You can move any application from one
workspace to another by clicking and dragging the application. Double click any one
of the workspaces will bring you to that workspace. Now, you can organise different
applications in different workspaces and keep your workspaces neat and tidy.

Part 2. Program Compilation
This part illustrates how to compile Qt programs.

1. Launch the GNOME terminal by clicking its icon in the launcher.

2. Change directory to your working directory, e.g.,

$ cd myname/myeditor

3. Compile the Qt programs in three steps. First, create project file as follows:

$ qmake -project

This command creates the project file myeditor.pro. You can double click on it to
open it and examine its content. This step is needed only when the Qt resource file
myeditor.qrc is revised or new program files are added.

4. Second, create Makefile as follows:

$ qmake

This command creates the Makefile which indicates how to compile the program.
You can double click its icon to open it and examine its content.

5. Finally, compile the programs as follows:

$ make

This command executes the instructions in Makefile, which include the following:

• Create and compile the resource file qrc_myeditor.cpp. This file encodes
the icon images that will be embedded into the executable file. This way, the
executable file can be run else where.

• Create and compile moc_MyEditor.cpp. This file contains the meta object
codes for MyEditor.

• Compile MyEditor.cpp and main.cpp.

• Link all the .o files and the Qt library files into an executable file.

6. By default, the name of the directory is used as the name of the executable file. To

3

specify a different name for the executable file, open myeditor.pro and fill in the
TARGET entry, for example,

TARGET = simple_editor

Next, run qmake to generate appropriate Makefile. Finally, compile the program with
make.

Part 3. Program Execution
This part illustrates running the program myeditor.

1. There are two ways to run myeditor: (1) In your working folder in Home Folder,
double click myeditor icon. (2) At the GNOME terminal's command prompt, type
myeditor followed by the Enter key.

2. Try each of the menu items in myeditor using the mouse. Load the sample file
example.txt into the editor to test the editor's features.

3. Try each of the menu items using the keyboard. For example, press ALT+F to show the
File menu, then press O to open a file.

4. Try each of the menu items using keyboard short cuts, e..g, CTRL+O to open a file.

5. Try each of the tool bar items by clicking the icons in the tool bar.

Part 4. Adding Menu and Tool Bar Items
In this part, you will learn to add three new actions to the editor application.

1. Add the following icon image file names to myeditor.qrc: copy.png, new.png and
saveas.png. The icon image files are already supplied in the images directory.

2. Add the following QActions to the MyEditor.h: newAction, saveAsAction,
copyAction.

3. Add the following slot functions to MyEditor.h:

• void newFile()

• bool saveAs()

4. Add to MyEditor::createActions() in MyEditor.cpp the following codes:

• Statements for creating newAction. Choose appropriate icon image file,
keyboard short cut, and status tip for the action. Connect the action's
triggered() signal to the newFile() slot.

• Repeat for saveAsAction and copyAction.

• The QPlainTextEdit widget used in MyEditor has a copy() slot which can
be connected to the copyAction. So, it is not necessary to reimplement
copy() slot.

5. Add the new actions to the appropriate menu bars and tool bars in
MyEditor::createMenus() and MyEditor::createToolBars().

6. Define the following functions in MyEditor.cpp but leave the function bodies empty
for the time being:

4

• void MyEditor::newFile()

• bool MyEditor::saveAs()

7. Compile and run the program. You should see the new actions included in the menu
bars and the tool bars. Try them out. As the newFile and saveAs function bodies are
empty, activating their menu items and tool bar items performs nothing.

Part 5. Writing Slot Functions
In this part, you will learn to write slot functions. You may need to refer to Qt Assistant for
the arguments and return objects of the functions. There are two ways to run Qt Assistant: (1)
Click Dash home icon in the Launcher, type Qt in the search box and press enter, then click
the Qt Assistant icon. (2) In GNOME terminal's command prompt, enter

assistant &

The & option informs bash to run Qt Assistant in a background process. This way, you get
your command prompt back.

1. In newFile slot, call okToContinue() to check whether it is ok to continue. If yes,
use textEdit->clear() to clear the text editor's content, and then call
setCurrentFile(””) to set the file name to an empty string.

2. In saveAs slot, call QFileDialog::getSaveFileName to get a user-specified file
name. If the file name is not empty, then call saveFile to save the content.

3. Change the save function to call saveAs if currFile is empty.

4. Compile and run the program.

(Optional) As this is a simple exercise, you should not need a debugger to debug your
program. Nevertheless, it's good to learn how to use a debugger to debug complex programs.
Refer to the Appendix for how to use a debugger in Ubuntu Linux.

Submission
After completing the lab exercise, run the revised editor and show it to the Lab TA for
verification. Then, print and submit the following to the Lab TA:

• Revised MyEditor.h and MyEditor.cpp. Remember to write your name,
matriculation number and lab group as comments in MyEditor.h and MyEditor.cpp.

• A screen shot of the revised MyEditor. To save a screen shot into a file, run the
program and press ALT+PRTSC. By default, the screen shot will be saved into the
Pictures directory under Home. You can save it into another directory if you wish.

Important Note
Save myeditor folder and everything in it into a flash drive for Lab 2.

5

Dash home

Home Folder

Firefox

Ubuntu Software Center

System Settings

GNOME Terminal

Update Manager

medit Editor

Workspace Switcher

Trash

Figure 1. Launcher in Ubuntu desktop. The icons in your default launcher may not be the
same as those shown here. You can keep or remove any of them by right-clicking the icons
and selecting or deselecting “Keep in launcher” option.

6

Appendix. Debugging Qt Programs

1. Compile Programs for Debugging

To debug a program, it has to be compiled with the -g option. This option can be included in
one of the following ways:

1. Include in Makefile

In the Makefile, there is a line that begins with CXXFLAGS:

CXXFLAGS = -pipe -O2 ...

These are the options for compiling C++ programs. Add -g anywhere after =. As
the Makefile is generated by qmake, you need to add -g option to the Makefile
after you run qmake.

2. Include in Qt project file

In the Qt project file, e.g., myeditor.pro, add the line

QMAKE_CXXFLAGS += -g

before the HEADERS line. Then, run qmake, and qmake will generate a Makefile
file with the -g option included in CXXFLAGS. This is more convenient if you need
to re-run qmake to generate Makefile. As the project file is generated by running

qmake -project

you need to add the line to the project file after it is generated by qmake.

3. Include in an auxiliary project file

Create an auxiliary project file, e.g., extra.pro, and add the line

QMAKE_CXXFLAGS += -g

to extra.pro. Then, add the line

include(extra.pro)

in the project file before the HEADERS line. Then, qmake will include the additional
statements in extra.pro when it is run. This is the same as for the second
method, but is convenient when you have more than one line of additional
statements to include into the project file.

After compiling the programs with the -g option, you can run a debugger to debug your
program. There are two convenient debuggers that come with Ubuntu: GDB and Nemiver.

2. GDB

GDB is a command-line debugger developed by GNU. It is very light-weight and quite easy
to use despite being a command-line debugger. To run GDB to debug an executable program
compiled with -g option, for example myeditor, open a terminal and type

gdb myeditor

7

At the (gdb) prompt, you can enter various GDB commands to debug your program.
Frequently used commands can be entered with a single letter, for example, h for help, l for
list, c for continue, etc. The following is a list of frequently used commands:

 Display the previously entered GDB command

help List categories of GDB commands

help <category> List commands in a category

help <command> Display information about a command

list List current function around current break point

list <line number> List current function around specified line number

list <file>:<line number> List file content around specified line number

list <function> List first few lines of specified function

break <location> Set breakpoint at specified location (line number or function)

clear <location> Clear breakpoint at specified location

delete <breakpoint> Delete breakpoint specified by number

delete <display> Cancel display expressions

run Start running program

step Step through one source line

step <n> Step through n source lines

next Step over one source line without entering a function

next <n> Step over n source lines

advance <location> Continue the program up to the given location

continue Continue the program up to the next breakpoint

print <expr> Display value of variable or expression

display <expr> Display value of variable or expression when program stops

info breakpoint Show information about breakpoints

info display Show information about auto-display expressions

For more information about GDB, refer to the user guide Debugging with GDB located in
/usr/local/doc. The root directory / is accessible as File System sub-folder in the Home
Folder.

3. Nemiver C/C++ Debugger

Nemiver C/C++ Debugger is a GUI tool for debugging C/C++ programs. There are two ways
to run Nemiver:

1. Click the Dash home icon and type Nemiver or debug in the search box. Then, click
the Nemiver icon. After Nemiver is launched, you need to load the executable by
selecting the menu item File  Load Executable, followed by filling in the popup
form.

8

2. At a terminal's command prompt, change directory to the working directory and type
nemiver with the executable file as the argument, e.g.

cd myname/myeditor

nemiver myeditor

Nemiver will be launched with the source file loaded and ready to go.

Figure 2. Nemiver C/C++ debugger.

9

