
Department of Computer Science
National University of Singapore

CS3249 User Interface Development
AY2013-14 Semester 2

Lab 2: Custom Widget

Objectives

• Learn to create and extend custom widget.

• Learn to use QLayout subclasses to layout and align widgets.

• Learn to use signals and slots for communication between widgets.

Part 0. Preparation
1. Under Home Folder, create a folder with your name, e.g., myname. This is your

working folder.

Part 1. Creation of Custom Widget
This part guides you through the process of creating the findDialog widget discussed in the
lecture as a subclass of QWidget.

1. Create a folder called myeditor-1 under your working folder myname.

2. Copy everything in myeditor that you saved in Lab 1 into myeditor-1.

3. Download finddialog.zip for Lab 2 into myname. Open finddialog.zip, and copy
example.txt into myeditor-1 and find.png into myeditor-1/images.

4. Open myeditor.qrc and add find.png into it.

5. Create a new file called FindDialog.h and add the class definition for FindDialog
as shown in the lecture notes. Remember to add the standard macros

#ifndef FINDDIALOG_H

#define FINDDIALOG_H

#endif

and include header files for QWidget and the required class declarations.

6. Create a new file called FindDialog.cpp and add the implementation of class
functions, as shown in the lecture notes, for

1

FindDialog::FindDialog()

void FindDialog::enableFindButton(const QString &str)

void FindDialog::findText()

7. Edit MyEditor.h as follows:

• Include header file FindDialog.h.

• Add public function ~MyEditor().

• Add private slot findText(). Make sure the arguments of the slot function
are correct.

• Add private variables findAction and findDialog. Make sure their data
types are correct.

8. Open MyEditor.cpp and edit ~MyEditor(), close(), createWidgets() and
createActions() as shown in the lecture notes.

9. Compile the programs in three steps

qmake -project

qmake

make

10. Run myeditor-1, open example.txt and test findDialog.

Part 2. Extension of Custom Widget
This part guides you through the process of extending FindDialog. by adding check boxes
and button. You will also learn how to use QLayout subclasses to layout and align the
widgets. The layout of the extended FindDialog is as follows:

1. Create a folder called myeditor-2 under your working folder myname.

2. Copy everything in folder myeditor-1, except the files myeditor-1.pro and
myeditor-1, to folder myeditor-2.

2

3. Edit FindDialog.h in myeditor-2 as follows:

• Add three check boxes of type QCheckBox* for backwardBox, matchCaseBox
and wholeWordBox. Remember to include the class declaration for QCheckBox.

• Add another button of type QPushButton* for closeButton.

• Change the signal find() to the following

void find(const QString &str, QTextDocument::FindFlags
flags);

The flags are used to indicate options for text search, namely backward search,
case-sensitivity and whole-word search, which are indicated by the check
boxes.

• Add a new signal close() as:

void close();

This signal is used to close the dialog.

4. In FindDialog.cpp of myeditor-2, edit FindDialog::FindDialog() as follows:

• Remove the original QHBoxLayout called layout.

• Create a QHBoxLayout called topRow to layout label and targetText.

• Create a QVBoxLayout called leftColumn to layout topRow, backwardBox,
matchCaseBox and wholeWordBox. Use addLayout() to add layout and
addWidget() to add widget.

• Create a QVBoxLayout called rightColumn to layout findButton and
closeButton.

• Create a QHBoxLayout called mainLayout to layout leftColumn and
rightColumn.

• (Optional) You can fix the size of FindDialog though mainLayout as follows:

mainLayout->setSizeConstraint(QLayout::SetFixedSize);

mainLayout will calculate the optimal size automatically.

• Set mainLayout as the layout of FindDialog.

• Connect the signal clicked() of closeButton to the slot hide() of
FindDialog.

5. In FindDialog.cpp of myeditor-2, edit FindDialog::findText() as follows:

• Define a local static variable flags of type QTextDocument::FindFlags.

• If backwardBox is checked, add the flag QTextDocument::FindBackward to
flags by bit-wise OR operation (|=).

• If matchCaseBox is checked, OR QTextDocument::FindCaseSensitively to
flags.

• If wholeWordBox is checked, OR QTextDocument::FindWholeWords to
flags.

• Emit the signal find(targetText->text(), flags).

6. Edit the function arguments of the slot function MyEditor::findText() in

3

MyEditor.h and MyEditor.cpp to match those of the signal FindDialog::find().
In addition, call the find function of textEdit with the flags as follows:

textEdit->find(str, flags);

This allows textEdit, an instance of QPlainTextEdit, to search for str with the
options specified in flags.

7. Compile the programs in three steps

qmake -project

qmake

make

8. Run myeditor-2, open example.txt and test findDialog.

Part 3. QDialog vs. QWidget
FindDialog can be defined to inherit QDialog instead of QWidget. This part explores the
slight difference between QDialog and QWidget.

1. Make a copy of myeditor-2 and call it myeditor-2w.

2. Edit FindDialog.h to change the base class of FindDialog to QDialog.

3. Compile the programs.

4. Make a copy of the new myeditor-2 and call it myeditor-2d.

5. Run myeditor-2w and test the findDialog.

6. Run myeditor-2d and test the findDialog.

7. What's the difference between QDialog implementation vs. QWidget implementation?

Submission
After completing the lab exercise, run myeditor-2d and myeditor-2w and show them to the
Lab TA for verification. Then, print and submit the following to the Lab TA:

• MyEditor.h, MyEditor.cpp, FindDialog.h (QDialog version) and FindDialog.cpp
(QDialog version). Remember to write your name, matriculation number and lab
group as comments in the source files.

• A screen shot of the revised MyEditor and FindDialog. To save a screen shot into a
file, run the program and press ALT+PRTSC. By default, the screen shot will be saved
into the Pictures directory under Home. You can save it into another directory if you
wish.

Important Note
Save your programs into a flash drive for subsequent use.

4

