
Comparison of Window Systems

A/Prof. Leow Wee Kheng
CS3249 User Interface Development
Department of Computer Science, National University of Singapore

10 Jan 2014

1 Introduction

Three computing platforms are commonly used in desktop and laptop computers, namely Microsoft
Windows, Mac OS/X and Linux. While Microsoft Windows and Mac OS X run their proprietary window
systems, Linux computers typically run the X Window System as the low-level window system. On top of X
Window, a variety of higher-level frameworks for GUI implementation are available such as Tcl/Tk, FLTK,
GTK and Qt. In particular, Qt is popular for its cross-platform capability and elegant design. These window
systems and frameworks have their own features, peculiarities, strengths and weaknesses. By comparing
their language features and mechanisms, we can better understand their design and implementation.

This document compares the main features between Qt, X Window, Mac Cocoa and Microsoft
Foundation Class with respect to the implementation of a simple GUI. Qt implementation is set as the
reference because of its simplicity and elegance. Other implementations try to mirror the behaviour of the Qt
implementation. In this way, this document may also serve as a bridge for programmers who are familiar
with one of the systems to quickly cross over to the other systems.

2 Age Dialog

For concrete comparisons, we use a simple GUI called the age dialog that consists of a spin box and a slider
(Fig. 1). A user can interact with the age dialog by typing in the text box of the spin box, click the spin wheel
of the spin box, or drag the slider. The spin box and slider are synchronised such that changing one of them
causes the other to be updated.

2.1 Qt

In Qt, the UI elements that a user interacts with are called widgets. The base class of all widget subclasses is
QWidget. Any widget without a parent widget is displayed as a window. So, there is no window class in Qt.
The dialog class QDialog is a subclass of QWidget with additional functions, signals and slots. While
QWidget is generally used for creating new widgets, both QWidget and QDialog can be used for creating
new dialogs.

There are two ways to create new widgets in Qt:

1. Composition

A new widget can be created by simply compositing existing widgets together. The widgets are
spatially arranged using subclasses of QLayout. A main layout manager organises all the underlying

1

layout managers and widgets, and is set as the layout manager of an empty QWidget instance. This
QWidget instance becomes the parent widget of the underlying widgets, which can be used in yet
another widget or displayed as an independent window.

2. Inheritance

This approach is essentially the same as the composition approach in terms of widget layout, except
that a subclass of QWidget is defined, whose instance is the parent widget of the underlying widgets.

Therefore, these two approaches for creating widgets are very consistent in Qt.

The age dialog in Qt (Fig. 1) consists of a parent QWidget, a QSlider and a QSpinBox, which integrates
a text box and a spin wheel. Turning the spin wheel updates the state of the spin box and displays the updated
state in the text box. Conversely, typing in the text box also updates the state of the spin box. The states of
the spin box and slider are synchronised through signals and slots mechanism.

Qt code for the age dialog, taken from [Blan2008], is as follows:

// age.cpp
// Qt implementation of the age dialog.

#include <QApplication>
#include <QHBoxLayout>
#include <QSlider>
#include <QSpinBox>

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);

 // Create widgets
 QWidget *window = new QWidget;
 window->setWindowTitle("Enter your age");

 QSpinBox *spinBox = new QSpinBox;
 spinBox->setRange(0, 130);

 QSlider *slider = new QSlider(Qt::Horizontal);
 slider->setRange(0, 130);

 // Connect signals to slots

2

 QObject::connect(spinBox, SIGNAL(valueChanged(int)),
 slider, SLOT(setValue(int)));
 QObject::connect(slider, SIGNAL(valueChanged(int)),
 spinBox, SLOT(setValue(int)));

 spinBox->setValue(35); // Initialise value.

 // Create layout
 QHBoxLayout *layout = new QHBoxLayout;
 layout->addWidget(spinBox);
 layout->addWidget(slider);
 window->setLayout(layout);

 // Start GUI
 window->show();
 return app.exec();
}

The QApplication class manages the GUI application's control flow and main setting. It contains the
event loop where events from the window system and other sources are processed and dispatched. A unique
static instance of QApplication called app is created. The event loop is started by calling app.exec() after
the widgets are created.

The widgets are created dynamically using the C++ new command. Their attributes are set using their
respective functions (also called methods). When the widgets are created, they are not visible. After age
dialog is created, it is exposed with the widget's show function.

Layout of the widget is managed by a QHBoxLayout layout manager, which is not a widget. Qt
distinguishes between widget and layout manager. Widgets take care of presentation and interaction, whereas
layout manager takes care of placement and resizing. QHBoxLayout automatically aligns the widgets to the
vertical centre. The widgets are set with default resize policy which QHBoxLayout tries to respect during
resizing. When the age dialog is expanded (Fig. 2a), the widgets remain in the vertical centre. The spin box is
not resized. The height of the slider is fixed but its width can change according to the dialog's width. When
the dialog is shrunken (Fig. 2b), its size cannot shrink below a minimum size (Fig. 2c), keeping the spin box
and the slider in view.

3

Qt also provides visual tools for application development: Qt Creator and Qt Designer. Qt Creator is an
IDE. Qt Designer allows the user to visually develop a GUI as a widget (QWidget), dialog (QDialog) or main
window (QMainWindow). It saves the composition of the GUI in a .ui file in XML format, which is easily
readable by human and machine. When the program is compiled, a .h file of the GUI is automatically
generated, which contains the Qt instructions for creating the GUI. Nevertheless, it is just as easy to develop
Qt applications using basic editors and debuggers.

Communications between the widgets are achieved with the signals and slots mechanism, a higher-level
mechanism than event handling. In particular, the valueChanged signals of spinBox and slider are
connected to each other's setValue slot (Table 1). Signals and slots mechanism is the most distinguished
feature of Qt, and by far the most elegant mechanism of all window systems. The advantages of signals and
slots mechanism are discussed in detail in [Blan2008].

2.2 X/Motif

X Window was designed and implemented in C, before the invention of C++. The term widget, i.e., window
gadget, was first used in X Window to refer to a UI element that a user interacts with. Widgets are defined in
terms of C struct, which does not support inheritance. Thus, composition is the only way to create new
widgets. X Window comes with built-in widgets called the athena widgets xaw. Nevertheless, Motif widgets
are popularly used with X Window, giving rising to the name X/Motif.

Motif widgets can be created in two ways:

1. Use Xt's generic widget creation function.

 widget = XtVaCreateManagedWidget(title, widget_class, parent,
 attribute1, value1, ..., NULL)

This function creates a managed widget of class widget_class. The widget's attribute values can be
set along with the widget creation function using pairs of attribute names and values.

2. Use Motif's widget creation function.

 widget = XmCreateSpinBox(parent, titles, arguments, number_of_arguments)

This function creates an unmanaged SpinBox widget. After creation, the following function should
be called to manage the widget.

XtManageChild(widget);

4

Table 1. Qt signal and slot connections.

Source Widget Signal Target Widget Slot

spinBox valueChanged slider setValue

slider valueChanged spinBox setValue

The age dialog in X/Motif (Fig. 3) consists of a parent widget, a SpinBox, a TextField and a Scale
(Motif's slider). Motif has two kinds of spin boxes: SpinBox and SimpleSpinBox. A SimpleSpinBox comes
with an accompanying child TextField, but there is no obvious way to access the child TextField for
synchronisation. The SpinBox does not have a predefined child TextField. One or more child TextFields
can be added to a SpinBox. The age dialog uses a SpinBox with a child TextField.

X/Motif code for the age dialog is as follows:

// age.c
// X/Motif implementation of the age dialog.

#include <Xm/Xm.h>
#include <Xm/SpinB.h>
#include <Xm/SSpinB.h>
#include <Xm/TextF.h>
#include <Xm/Scale.h>
#include <Xm/Label.h>
#include <Xm/RowColumn.h>
#include <Xm/Form.h>
#include <string.h>

XtCallbackProc spinTextVerify(Widget, Widget, XmAnyCallbackStruct *);
XtCallbackProc spinBoxValueChanged(Widget, Widget, XmSpinBoxCallbackStruct *);
XtCallbackProc sliderValueChanged(Widget, Widget, XmScaleCallbackStruct *);

#define MinValue 0
#define MaxValue 130
#define InitValue 35

int main (int argc, char *argv[])
{
 XtAppContext app;
 Widget window, layout, spinBox, spinText, slider;

 window = XtVaAppInitialize(&app, "top", NULL, 0,
 &argc, argv, NULL, NULL);

 layout = XtVaCreateManagedWidget("layout",
 xmFormWidgetClass, window, NULL);

 spinBox = XtVaCreateManagedWidget("spin box",

5

 xmSpinBoxWidgetClass, layout,
 XmNleftAttachment, XmATTACH_FORM,
 XmNleftOffset, 5, NULL);

 spinText = XtVaCreateManagedWidget("spin box text",
 xmTextFieldWidgetClass, spinBox,
 XmNspinBoxChildType, XmNUMERIC,
 XmNminimumValue, MinValue,
 XmNmaximumValue, MaxValue,
 XmNcolumns, 4,
 XmNwrap, FALSE,
 XmNpositionType, XmPOSITION_VALUE,
 XmNposition, InitValue, NULL);

 slider = XtVaCreateManagedWidget("slider",
 xmScaleWidgetClass, layout,
 XmNwidth, 120,
 XmNorientation, XmHORIZONTAL,
 XmNminimum, MinValue,
 XmNmaximum, MaxValue,
 XmNvalue, InitValue,
 XmNleftAttachment, XmATTACH_WIDGET,
 XmNleftWidget, spinBox,
 XmNleftOffset, 5,
 XmNrightAttachment, XmATTACH_FORM,
 XmNrightOffset, 5,
 XmNtopAttachment, XmATTACH_FORM,
 XmNtopOffset, 8, NULL);

 XtAddCallback(spinText, XmNactivateCallback, spinTextVerify, slider);
 XtAddCallback(spinBox, XmNvalueChangedCallback, spinBoxValueChanged, slider);
 XtAddCallback(slider, XmNdragCallback, sliderValueChanged, spinText);
 XtAddCallback(slider, XmNvalueChangedCallback, sliderValueChanged, spinText);

 XtRealizeWidget(window);
 XtAppMainLoop(app);
 return 0;
}

XtCallbackProc spinTextVerify(Widget spinText, Widget slider,
 XmAnyCallbackStruct *cbs)
{
 int ret, value, changed;
 char *str, string[100];

 changed = 0;
 str = XmTextFieldGetString (spinText);
 if (str && (ret = sscanf(str, "%d", &value)) > 0)
 {

6

 sprintf(string, "%d", value);
 if (strlen(string) == strlen(str) && value >= MinValue && value <= MaxValue)
 {
 XtVaSetValues(spinText, XmNposition, value, 0);
 XtVaSetValues(slider, XmNvalue, value, 0);
 changed = 1;
 }
 }

 if (str)
 XtFree(str);

 if (!changed)
 {
 XtVaGetValues(spinText, XmNposition, &value, 0);
 sprintf(string, "%d", value);
 XmTextFieldSetString(spinText, string); // Reset text field.
 }
}

XtCallbackProc spinBoxValueChanged(Widget spinBox, Widget slider,
 XmSpinBoxCallbackStruct *cbs)
{
 int value;

 XtVaGetValues(cbs->widget, XmNposition, &value, 0);
 XtVaSetValues(slider, XmNvalue, value, 0);
}

XtCallbackProc sliderValueChanged(Widget slider, Widget spinText,
 XmScaleCallbackStruct *cbs)
{
 int value;

 XtVaGetValues(slider, XmNvalue, &value, 0);
 XtVaSetValues(spinText, XmNposition, value, 0);
}

X's equivalent of QApplication is XtAppContext. An instance of XtAppContext called app is created
statically. The event loop is started with the function XtAppMainLoop(app).

The dialog window is created with XtVaAppInitialize, whereas the other widgets are created with
XtVaCreateManagedWidget. Their attributes are specified as arguments to the widget creation functions. Te
widgets are created invisible. After the whole dialog is created, it is exposed by the function
XtRealizeWidget.

Layout of the widgets is managed by the layout manager layout, of type xmFormWidgetClass. Unlike

7

Qt layout manager, X/Motif layout manager is also a widget. Placements of the widgets are specified as
arguments to the widget creation functions. In contrast, placement of a Qt widget is specified when adding
the widget to the layout manager using the addWidget function.

Motif has a RowColumn layout manager that is similar to Qt's QBoxLayout. However, RowColumn cannot
centre a slider vertically; vertical positioning works only for labels and texts. So, the Form widget is used
instead. Form widget uses an attachment scheme to specify the placements and resizing of widgets. By
default, a widget is placed at the top-left corner of its parent Form. It can be specified to attach to the left,
right, top or bottom sides of the Form or other widgets in the Form. Attaching to the left or right side allows a
widget to still slide up and down as the window resizes. Similarly, attaching to the top or bottom side allows
a widget to slide left and right in the window. To fix a widget's location, it has to be attached on two
orthogonal sides. The sample program attaches spinBox, together with its child spinText, to the left of
layout. which is a Form widget, and attaches slider to the left of spinBox and right of layout. In addition,
slider is attached to the top of layout with an offset so that slider is vertically aligned to the centre of
spinBox (Fig. 3).

When the age dialog is expanded, spinBox's size remains unchanged while slider is stretched
horizontally (Fig. 4a). Both widgets remain fixed to the top of the dialog. By default, the age dialog can be
shrunken so much the widgets can be partly hidden (Fig. 4b) or totally hidden (Fig. 4c).

The widgets are responsible only for displaying window content. Their behaviours are achieved by
callback functions. Each callback is associated to a widget and an event using XtAddCallback (Table 2).
Auxiliary data can be passed to XtAddCallback. When the user interacts with a widget, an event is added to
the event queue. The event dispatcher running the event loop removes an event from the event queue and
calls the associated callback, with the associated widget and data as the arguments.

The callback spinTextVerify is called when the user activates the text box (XmNactivateCallback
event) by pressing the enter key in the text box. It verifies that the text maintained in spinText is a valid
integer value. It updates the values of slider and spinText, which maintains the value of its parent
spinBox. The callback spinBoxValueChanged is called when the user clicks the spin wheel up or down,
which causes its value to change (XmNvalueChangedCallback event). The value of its child spinText is
updated automatically, which is used by the callback to update the value of slider. The callback
sliderValueChanged is called when the slider is dragged (XmNdragCallback event) or when the user
releases the mouse button after dragging, which causes the value to change (XmNvalueChangedCallback
event). It gets the value of slider and updates the value of spinText.

8

Some notes on program syntax: If you get the following warning messages from your compiler, it is safe
to ignore them and your program still runs properly. However, if you really want to turn off the warning
messages, then do the following:

• missing sentinel in function call

This is a result of using 0 instead of NULL to end the argument lists of XtVaGetValues and
XtVaSetValues. To fix it, just change 0 to NULL.

• ‘XtAddCallback’ from incompatible pointer type

This results from declaring the prototype of the callbacks as

XtCallbackProc callback(Widget, Widget, XmAnyCallbackStruct *);

or other forms. Changing the prototype to

void callback(Widget, XtPointer, XtPointer);

fixes the problem. In this case, you can cast the 2nd and 3rd arguments to the proper types in the
callback function as follows:

 void sliderValueChanged(Widget slider, XtPointer wp, XtPointer cp)

 {

 int value;

 Widget textField = (Widget) wp;
 XmScaleCallbackStruct *cbs = (XmScaleCallbackStruct *) cp;

 XtVaGetValues(slider, XmNvalue, &value, NULL);
 XtVaSetValues(textField, XmNposition, value, NULL);
 }

Like Qt codes, X/Motif codes are also straightforward and easy to understand. Motif widgets are
responsible only for handling graphic appearance on the screen. Their behaviours are programmed in the
callback functions. In comparison, Qt widgets are functionality complete, which can be used as they are by
connecting signals to appropriate slots. The similarity in the programming style and naming of the widgets,
events and functions between Qt and X/Motif suggests that the creators of Qt, Haavard Nord and Eirik
Chambe-Eng, adopted some good practices of X/Motif in Qt, including the term widget.

9

Table 2. X/Motif callback table.

Widget Event Callback Data

spinText XmNactivateCallback spinTextVerify slider

spinBox XmNvalueChangedCallback spinBoxValueChanged slider

slider XmNdragCallback sliderValueChanged spinText

slider XmNvalueChangedCallback sliderValueChanged spinText

2.3 Mac Cocoa

Mac OS X provides the Cocoa framework for building GUI. Cocoa differentiates between window and view.
An NSWindow object manages a physical window on the screen. An object of NSView class or its subclass
owns a rectangular region associated with a window. It produces the image content for the region and
responds to events occurring in it. The content view is the top-level view of a window. It contains the view
for each UI element such as text field view, button view and slider view. Cocoa also have panel, a NSPanel
instance, which is a special kind of window analogous to QDialog in Qt.

In Cocoa, the UI elements that a user interacts with are called controls, which are instances of NSView
subclasses. A control can contain one ore more cells (Fig. 5), which are rectangular areas within a control and
they are instances of NSCell subclasses. Control is responsible for displaying the GUI component, accepting
user events and sending messages (i.e., events) to other objects, though it usually delegates the first two
responsibilities to the cells, so that text or images can be displayed in a view without the full overhead of an
NSView subclass.

GUI is developed using Xcode, Mac's IDE and GUI builder. UI elements are selected and placed in
Xcode, which generates a specification of the GUI in a nib file (“nib” stands for “NeXT Interface Builder”).
Similar to Motif implementation, Cocoa implementation of the age dialog (Fig. 6) uses three UI elements:
text field, spin wheel (called stepper in Cocoa) and slider. Unlike Motif, however, the spin wheel and the text
field are separate controls that maintain their own states.

10

Fig. 6. Cocoa implementation of age dialog.

Fig. 5. In Cocoa, a UI element is called a control and it can contain multiple cells.

The main Cocoa code written in Objective-C is as follows:

// main.m

#import <Cocoa/Cocoa.h>

int main(int argc, char *argv[])
{
 return NSApplicationMain(argc, (const char **)argv);
}

// AgeDialog.h

#import <Cocoa/Cocoa.h>

@interface AgeDialog : NSObject <NSApplicationDelegate>

@property (assign) IBOutlet NSWindow *window;
@property (assign) IBOutlet NSTextField *spinText;
@property (assign) IBOutlet NSStepper *spinWheel;
@property (assign) IBOutlet NSSlider *slider;

@end

// AgeDialog.m

#import "AgeDialog.h"

#define MIN_AGE 0
#define MAX_AGE 130

@implementation AgeDialog

- (void)dealloc
{
 [super dealloc];
}

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification
{
 // Insert code here to initialize your application
 [[self spinText] setIntegerValue:35];
 [[self spinWheel] setIntegerValue:[[self spinText] integerValue]];
 [[self slider] setIntegerValue:[[self spinText] integerValue]];
}

11

- (IBAction)textChanged:(NSTextField *)sender
{
 // Use scanner class to parse string into integer
 NSScanner* scanner = [NSScanner scannerWithString:[sender stringValue]];
 NSInteger result;
 bool status = [scanner scanInteger:&result];

 if(status == YES && scanner.scanLocation == [[sender stringValue] length]
 && [sender integerValue] >= MIN_AGE && [sender integerValue] <= MAX_AGE)
 {
 [[self slider] setIntegerValue:[sender integerValue]];
 [[self spinWheel] setIntegerValue:[sender integerValue]];
 }
 else
 {
 // Otherwise reset to original value as that of slider
 [[self spinText] setIntegerValue:[[self slider] integerValue]];
 }
}

- (IBAction)spinWheelValueChanged:(NSStepper *)sender {
 [[self spinText] setIntegerValue:[sender integerValue]];
 [[self slider] setIntegerValue:[sender integerValue]];
}

- (IBAction)sliderValueChanged:(NSSlider *)sender {
 [[self spinText] setIntegerValue:[sender integerValue]];
 [[self spinWheel] setIntegerValue:[sender integerValue]];
}

@end

Cocoa's equivalent of QApplication in NSApplication. An instance of NSApplication called NSApp is
automatically created which maintains the event loop. The method NSApplicationMain creates the objects
specified in the nib file and wake them up. Then, the method applicationDidFinishLaunching is invoked,
which initialises the window and controls. Finally, the event loop is run.

The AgeDialog is defined as a subclass of NSObject, the parent class of all Objective-C classes, using
the @interface keyword, and it implements the protocol of NSApplicationDelegate. Objective-C
protocol is similar to Java interface that specifies the methods that an object class implements. The keyword
IBOutlet defines a special instance variable that points to another object of a particular class (Fig. 7).
AgeDialog has four outlets, namely window, spinText, spinWheel and slider, each pointing to an object
of a different class, respectively, NSWindow, NSTextField, NSStepper and NSSlider. Note that AgeDialog
itself is not a window. Instead, it has an outlet that points to an NSWindow object. The @property keyword
declares that the pair of methods known as a setter and a getter for the instance variables. For a variable
named value, the setter method is named setValue and the getter method is named value. For AgeDialog,
the getters and setters simply get and set the references (or pointers) to the controls.

12

The range of values of the controls can be specified in Xcode or written explicitly in AgeDialog.m. In
this example, they are encoded in the nib file. Similarly, the initial value of 35 can be specified in either way.
In this example, it is written in the function applicationDidFinishLaunching.

Layout of the controls are specified in Xcode, and encoded in the nib file. Resizing of the age dialog
works in a similar way as does X/Motif. When the dialog is expanded, the slider is stretched horizontally and
the spin box remains unchanged (Fig. 8a). The dialog can be shrunken until the controls are not visible (Fig.
8b).

Like X/Motif, Cocoa controls are responsible only for displaying window content. Their behaviours are
achieved by Cocoa's target-action mechanism (Fig. 9). Actions are special methods in target objects indicated
with the IBAction keyword. They are triggered when their associated controls are activated by the user.
AgeDialog has three action methods. Connections between controls and their targets and actions are
specified in Xcode. There is no need to explicitly refer to events in the source code of AgeDialog.

The method textChanged is called when the user presses enter key after changing the text box. It scans
for an integer in the text string entered and checks that the integer value is within range. Then, it calls
spinWheel and slider to update their values. The method spinWheelValueChanged is called when
spinWheel is clicked up or down, and it calls slider and spinText to update their values. Similarly, the
method sliderValueChanged is called when slider is dragged, and it calls spinWheel and spinText to
update their values. Thus, Cocoa's target-action mechanism is analogous to X/Motif's callback mechanism.

13

(a) (b)

Fig. 8. Resizing of Cocoa age dialog. (a) Expansion, (b) minimum size.

Except for the specifications that are hidden in the nib file, which includes creation, layout and
initialisation of control objects and connections between control objects and their targets and actions, the
action methods are relatively straightforward and easy to understand.

2.4 MFC

Microsoft Foundation Class (MFC) is a higher-level framework on top of Windows API for developing GUI
applications. MFC provides two main types of top-level window, namely frame window CFrameWnd and
dialog CDialog, both are subclasses of CWnd. CFrameWnd and CDialog are analogous to Qt's QMainWindow
and QDialog.

In MFC, the UI element that a user interacts with are called controls, as for Cocoa. Although windows,
dialogs and controls are all subclasses of CWnd, their behaviours are not as uniform as those of QWidget
subclasses. MFC differentiates between frame window class CFrameWnd, dialog class CDialog and controls.
CFrameWnd is analogous to QMainWindow whereas CDialog is analogous to QDialog.

GUI is developed using an IDE such as Visual Studio. UI elements are selected and placed in Visual
Studio. Similar to Motif implementation, MFC implementation of the age dialog (Fig. 10) uses three UI
elements, namely CEdit, CSpinButtonCtrl and CSliderCtrl. The text field and the spin wheel are linked
in Visual Studio such that their states are synchronised.

14

Fig. 10. MFC implementation of age dialog.

Visual Studio generates as many as 15 files and several subdirectories for the age dialog. Most of the
files do not need to be changed. The four most relevant files are listed below, two for the application and two
for the dialog. The black and blue parts are automatically generated by Visual Studio, whereas the red parts
are manually added either in Visual Studio or directly in the source files.

//--
// Age.h : main header file for the PROJECT_NAME application

#pragma once

#ifndef __AFXWIN_H__
#error "include 'stdafx.h' before including this file for PCH"

#endif

#include "resource.h" // main symbols

// AgeApp:
// See Age.cpp for the implementation of this class

class AgeApp : public CWinApp
{
public:

AgeApp();

// Overrides
public:

virtual BOOL InitInstance();

// Implementation

DECLARE_MESSAGE_MAP()
};

extern AgeApp theApp;

//--
// Age.cpp : Defines the class behaviors for the application.

#include "stdafx.h"
#include "Age.h"
#include "AgeDialog.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

// AgeApp

15

BEGIN_MESSAGE_MAP(AgeApp, CWinApp)
ON_COMMAND(ID_HELP, &CWinApp::OnHelp)

END_MESSAGE_MAP()

// AgeApp construction

AgeApp::AgeApp()
{

// TODO: add construction code here,
// Place all significant initialization in InitInstance

}

// The one and only AgeApp object

AgeApp theApp;

// AgeApp initialization

BOOL AgeApp::InitInstance()
{

CWinApp::InitInstance();

// Create the shell manager, in case the dialog contains
// any shell tree view or shell list view controls.
CShellManager *pShellManager = new CShellManager;

// Activate "Windows Native" visual manager for enabling themes in MFC controls
CMFCVisualManager::SetDefaultManager(RUNTIME_CLASS(CMFCVisualManagerWindows));

// Standard initialization
// If you are not using these features and wish to reduce the size
// of your final executable, you should remove from the following
// the specific initialization routines you do not need
// Change the registry key under which our settings are stored
// TODO: You should modify this string to be something appropriate
// such as the name of your company or organization
SetRegistryKey(_T("Local AppWizard-Generated Applications"));

AgeDialog dlg;
m_pMainWnd = &dlg;
INT_PTR nResponse = dlg.DoModal();
if (nResponse == IDOK)
{

// TODO: Place code here to handle when the dialog is
// dismissed with OK

}
else if (nResponse == IDCANCEL)

16

{
// TODO: Place code here to handle when the dialog is
// dismissed with Cancel

}
else if (nResponse == -1)
{

TRACE(traceAppMsg, 0, "Warning: dialog creation failed, so application is
terminating unexpectedly.\n");

TRACE(traceAppMsg, 0, "Warning: if you are using MFC controls on the dialog, you
cannot #define _AFX_NO_MFC_CONTROLS_IN_DIALOGS.\n");

}

// Delete the shell manager created above.
if (pShellManager != NULL)
{

delete pShellManager;
}

// Since the dialog has been closed, return FALSE so that we exit the
// application, rather than start the application's message pump.
return FALSE;

}

//--
// AgeDialog.h : header file

#pragma once

#include "afxcmn.h"
#include "afxwin.h"

// AgeDialog dialog
class AgeDialog : public CDialog
{
// Construction
public:

AgeDialog(CWnd* pParent = NULL); // standard constructor

// Dialog Data
enum { IDD = IDD_AGE_DIALOG };

protected:
virtual void DoDataExchange(CDataExchange* pDX);// DDX/DDV support

// Implementation
protected:

HICON m_hIcon;

// Generated message map functions

17

virtual BOOL OnInitDialog();
 afx_msg void OnPaint();
 afx_msg HCURSOR OnQueryDragIcon();

afx_msg void OnEnUpdateSpintext();
afx_msg void OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar);
DECLARE_MESSAGE_MAP()

private:
int age;
CEdit spinText;
CSpinButtonCtrl spinWheel;
CSliderCtrl slider;

};

//--
// AgeDialog.cpp : implementation file
//

#include "stdafx.h"
#include "Age.h"
#include "AgeDialog.h"
#include "afxdialogex.h"

// AgeDialog dialog

AgeDialog::AgeDialog(CWnd* pParent /*=NULL*/)
: CDialog(AgeDialog::IDD, pParent)
, age(0)

{
m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

}

void AgeDialog::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);
DDX_Control(pDX, IDC_SPINTEXT, spinText);
DDX_Control(pDX, IDC_SPINWHEEL, spinWheel);
DDX_Control(pDX, IDC_SLIDER, slider);

}

BEGIN_MESSAGE_MAP(AgeDialog, CDialog)
ON_WM_PAINT()
ON_WM_QUERYDRAGICON()
ON_EN_UPDATE(IDC_SPINTEXT, &AgeDialog::OnEnUpdateSpintext)
ON_WM_HSCROLL()

END_MESSAGE_MAP()

// AgeDialog message handlers

18

BOOL AgeDialog::OnInitDialog()
{

CDialog::OnInitDialog();

// Set the icon for this dialog. The framework does this automatically
// when the application's main window is not a dialog
SetIcon(m_hIcon, TRUE); // Set big icon
SetIcon(m_hIcon, FALSE); // Set small icon

// TODO: Add extra initialization here
spinWheel.SetRange(0, 130);
slider.SetRange(0, 130);
spinWheel.SetPos(35);

return TRUE; // return TRUE unless you set the focus to a control
}

// If you add a minimize button to your dialog, you will need the code below
// to draw the icon. For MFC applications using the document/view model,
// this is automatically done for you by the framework.

void AgeDialog::OnPaint()
{

if (IsIconic())
{

CPaintDC dc(this); // device context for painting

SendMessage(WM_ICONERASEBKGND, reinterpret_cast<WPARAM>(dc.GetSafeHdc()), 0);

// Center icon in client rectangle
int cxIcon = GetSystemMetrics(SM_CXICON);
int cyIcon = GetSystemMetrics(SM_CYICON);
CRect rect;
GetClientRect(&rect);
int x = (rect.Width() - cxIcon + 1) / 2;
int y = (rect.Height() - cyIcon + 1) / 2;

// Draw the icon
dc.DrawIcon(x, y, m_hIcon);

}
else
{

CDialog::OnPaint();
}

}

// The system calls this function to obtain the cursor to display while the user drags
// the minimized window.

19

HCURSOR AgeDialog::OnQueryDragIcon()
{

return static_cast<HCURSOR>(m_hIcon);
}

void AgeDialog::OnEnUpdateSpintext()
{

// TODO: If this is a RICHEDIT control, the control will not
// send this notification unless you override the CDialog::OnInitDialog()
// function to send the EM_SETEVENTMASK message to the control
// with the ENM_UPDATE flag ORed into the lParam mask.

 int value = GetDlgItemInt(IDC_SPINTEXT);

if (value > 130 || value < 0)
{

value = age;
SetDlgItemInt(IDC_SPINTEXT, age);

}

age = value;
if (slider)

 slider.SetPos(age);
}

void AgeDialog::OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)
{

// TODO: Add your message handler code here and/or call default

if(pScrollBar == (CScrollBar *) &slider)
{

int value = slider.GetPos();
age = value;
SetDlgItemInt(IDC_SPINTEXT, age);

}
else

CDialog::OnHScroll(nSBCode, nPos, pScrollBar);

CDialog::OnHScroll(nSBCode, nPos, pScrollBar);
}

MFC's equivalent of QApplication is CWndApp. Unlike Qt, X and Cocoa which simply use an instance
of their application classes, MFC requires the creation of AgeApp as a subclass of CWndApp, even though
usually nothing needs to be changed in AgeApp. An unique instance of AgeApp called theApp is created as a
global static object in Age.cpp. The C++ main function is automatically provided by MFC, and
CWndApp::Run() is called automatically to run the event loop.

20

Examination of Age.h and Age.cpp shows that these files contain rather complicated instructions. So, the
instructions are generated automatically in case the programmer needs to change AgeApp. Providing place-
holders in the function InitInstance to handle different ways by which the dialog closes is useful but
breaks the coherence of AgeApp class and incurs a tighter coupling between AgeApp and AgeDialog.
Automatic generation of several other .h and .cpp files further complicates the implementation. In
comparison, the implementations of Qt, X/Motif and Cocoa are cleaner, more coherent and less tightly
coupled.

The AgeDialog is defined as a subclass of CDialog. It contains three controls, namely spinText,
spinWheel and slider, which is an instance of CEdit, CSpinButtonCtrl and CSliderCtrl, respectively.
Each control is associated with a GUI item identified by an ID number, which are labelled as IDC_SPINTEXT,
IDC_SPINWHEEL and IDC_SLIDER (Fig. 11). Synchronisation between the states of the GUI items and the
control objects is achieved by the Dialog Data Exchange (DDX) mechanism specified in the function
DoDataExchange. In contrast, in Qt, X/Motif and Cocoa, the widgets or controls are the actual GUI
elements. Cocoa uses outlets to point to the controls and cells, whereas Qt and X/Motif use C/C++ pointers
to point to the widgets.

Layout of the widow components is specified in Visual Studio, and encoded in the generated files. By
default, resizing the window does not affect the size of the controls (Fig. 12). The dialog can be shrunken
until the controls are partially or totally invisible (Fig. 12b, c).

 Like X/Motif and Cocoa, MFC GUI items and control objects are responsible only for displaying
window content. Their behaviours are achieved by message handlers, MFC's term for event handlers. The
events or messages to be handled by the AgeDialog are specified in the message map section of
AgeDialog.cpp. Each event is handled by a prescribed function (Table 3) that AgeDialog can override to
implement the require behaviour. The WM messages are mapped to default message handlers, which need

21

(a) (b) (c)

Fig. 12. Resizing of MFC age dialog. (a) Expansion, (b) shrinking, (c) minimum size.

Fig. 11. Dialog data exchange between control objects in AgeDialog and GUI items.

not be specified in the message map. On the hand other, the EN message is mapped to a programmer-
specified function OnEnUpdateSpintext .

The method OnEnUpdateSpintext is called when the user presses enter key after changing the text box
(ON_EN_UPDATE event). It obtains the integer value of the text box through its ID IDC_SPINTEXT, checks that
the value is within range, and set the value of the text box through IDC_SPINTEXT and the value of the slider
by calling the SetPos function of slider. The spin button and the text box are linked in Visual Studio, so
there is no need to explicitly set the value of the spin button. The method OnHScroll is called when the user
slides the slider (ON_WM_HSCROLL event). It checks whether the control that activated the event is slider, and
then gets the value of slider to update the text box.

The codes for two other message handlers (blue parts), namely OnPaint and OnQueryDragIcon, are
automatically generated. There is no need to change these methods. In fact, they can be completely
commented out, i.e., not overridden in AgeDialog, and the corresponding methods of the parent class
CDialog work just as well.

3 Summary

Table 4 summarises the major features of Qt, X Window, Cocoa and MFC. In developing a GUI application,
both Qt and X require only the declaration of a static application object. Cocoa requires only the calling of
the class function NSApplicationMain of NSApplication. In contrast, MFC require the creation of a
subclass of CWinApp. Even though the source code of the application subclass can be generated
automatically, the need to create an application subclass indicates that MFC is less elegantly designed as the
other frameworks.

In Qt, any widget without a parent is a window. In X, the main window is a widget created by the
function XtVaAppInitialize. Cocoa and MFC, on the other hand, differentiate between window and UI
elements called controls. Qt differentiates between layout manager and widget whereas X layout manager is
also a widget. Window layout for Cocoa and MFC are specified in the Xcode and Visual Studio respectively
and encoded in project files.

MFC differentiates between GUI items and control objects. GUI items are identified by ID numbers
whereas control objects are instances of control classes. Dialog Data Exchange (DDX) mechanism is used to
synchronise the states of the GUI items and the control objects. In contrast, Cocoa, X and Qt directly place
controls or widgets in the GUI. Cocoa uses outlets to point to window and controls, whereas X and Qt use
C/C++ pointers to point to widgets.

22

Table 3. Message map indicates the events to be processed by AgeDialog.

Message Message Handler

ON_WM_PAINT OnPaint

ON_WM_QUERYDRAGICON OnQueryDragIcon

ON_EN_UPDATE OnEnUpdateSpintext

ON_WM_HSCROLL OnHScroll

Widgets and controls in X Window, Cocoa and MFC are responsible only for displaying window
content. Their behaviours are implemented in functions. When an event is dispatched, X Window invokes a
callback function that is implemented in the top-level window. Cocoa invokes an action method implemented
in target object that serves as the top-level window, whereas MFC invokes a message handler implemented
in the top-level window. In contrast, Qt widgets are functionally more complete and can be used as they are
in the GUI, and they communicate through signals and slots.

In summary, Qt codes are short, elegant, transparent and easy to understand. X Window codes are longer
but simple, transparent and easy to understand. Cocoa codes are short and relatively simple and easy to
understand. It is quite transparent except for the parts that are hidden in the nib file. MFC codes are long,
complex, often redundant and relatively difficult to understand. Some parts of the code are hidden in various
binary coded files.

23

Table 4. Comparison of major features of various frameworks.

Qt X/Motif Cocoa MFC

application QApplication
instance

XtAppContext
instance

NSApplication
instance

CWinApp
subclass instance

event loop QApplication::
exec()

XtAppMainLoop() in NSApplication CWinApp::Run()

top-level window widget without
parent

widget created by
 XtVaAppInitialize

NSWindow CWnd
subclass

dialog QDialog Widget NSPanel CDialog

UI element QWidget
or subclass

Widget control,
NSView subclass

control,
CWnd subclass

layout QLayout
subclass

layout widget specified in XCode specified in Visual
Studio

widget reference C++ pointer C pointer IBOutlet Dialog Data
Exchange

widget
communication

signals and slots event callback target-action
(similar to event

callback)

message map
(similar to event

callback)

widget behaviour widget functions top-level window's
callbacks

target top-level
window's callbacks

top-level window's
message handlers

coding style short and elegant long but simple short and simple long and complex

code readability easy to understand,
transparent

easy to understand,
transparent

easy to understand,
some parts hidden

difficult to
understand,

some parts hidden

4 References

1. J. Blanchette and M. Summerfield. C++ GUI Programming with Qt 4, 2nd ed., Prentice Hall, 2008.

2. P. Buttfield-Addison and J. Manning. Learning Cocoa with Objective-C, 3rd ed., O'Reilly, 2013.

3. Cocoa Fundamentals Guide, Apple Computer Inc., 2010.

4. J. D. Davidson and Apple Computer, Inc. Learning Cocoa with Objective-C, 2nd ed., O'Reilly, 2002.

5. A. Fountain, J. Huxtable, P. Ferguson and D. Heller. Motif Programming Manual, O'Reilly, 2001.

6. I. Horton. Beginning Visual C++ 2010, Wiley, 2010.

7. B. J. Keller. A Practical Guide to X Window Programming, CRC, 1990.

8. M. Trent and D. McCormack. Beginning Mac OS X Snow Leopard Programming, Wiley, 2010.

24

