
MAGIC MIRROR

M1560210
Gesture Controlled Touchless Interactive Display for Virtual Try-on

CS3283 Final Report

1

Report Contents:

1 Introduction
● Abstract
● Target Users & system installation
● Requirement & solution
2 Related Work (Links)
3 Design Phase
● General functionalities
○ Fitting room menu
○ Browser menu
○ Recycle bin menu
○ Photo catalog menu
● paper prototype (1st phase)
○ Wardrobe menu
○ Fitting room menu
○ Recycle bin menu
● digital prototype (2nd phase)
○ Use Cases
○ Magic Mirror Architecture
○ Internal Structure
○ Meeting user requirements
4 Re-modified Prototype
● Changes to initial design
○ re-arrangement of icons
○ addition of cursor (tentative)
● Evaluations
5 Discussion (Future direction)
6 References

Annex B (API)

2

1. Introduction

Abstract
The magic mirror was first conceptualized as a virtual wardrobe and mirror that

allows users to freely interact with it without any pointing devices, touch screen devices
or keyboard. In implementing it, input is made through motion-sensor devices, namely a
Microsoft Kinect. An LCD screen of appropriate dimensions is used for output display,
and users use recognised hand gestures to interact with the system. The main use of
this system is to let users browse for clothes and apparels within the system itself, then
subsequently try out those clothes on their “body”, a mirror image projection on the
display, once they have selected some. The displayed content consists of icons,
information of clothes, and also most importantly, the mirror showing the users’
reflections in said clothes.

Target Users & System Installation
The main target audience for the Magic Mirror would be frequent shoppers,

mainly the technologically-adventurous young adolescents and adults ranging between
16 - 39 years of age. Shoppers can both be male or female in this context. This system
can thus be installed in shopping malls or at home for users’ convenience. The target
group are also assumed to have frequent usage of ICT gadgets such as smartphones,
such that they can apply their knowledge in using the proposed system.

Requirement & Solution
Since the target user group is one which is exposed to the latest in technological

gadgets, it has been assumed that they are familiar with interacting with other HCI
gadgets such as smartphones and tablets. This group of users would expect more than
just functionality in terms of user-friendliness and user-experience. With this user
requirement in mind, we set out to achieve fluidity in the system’s runtime design,
particularly in the GUI and menu navigation. The NUI employed will be intuitive and
easy to use for them. The solution, in the form of a “Magic Mirror”, is an alternative to
answer the demands of the target group, with the various user-experience elements
supporting the basic usability functions.

3

2. Related Work

Fitting Reality - http://fittingreality.com/
Fitting Reality is a Russian-based technology company with the main goal of developing
a virtual fitting room that will cater to the shopper’s needs. Their current model,
theVIPodium is based on the Kinect System, featuring an augmented reality built on the
Kinect’s depth and sensor technologies. A 3D avatar is modeled based on image data
from the data, as well as, some user supplied demographic data. All clothing is fitted to
the avatar which is synced with the user’s movement in real time, virtually “dressing” the
user according to items he may select from a catalogue maintained on a cloud server.

The company’s model reveals vast potential for growth in this field and our team aims to
build on the successes of their current user interface, by further challenging the
capacities of the Kinect’s gesture systems, for the purpose of extending the usability
and enhancement of the user experience.

4

http://fittingreality.com/

3. Design Prototype Phase

There are 2 design phases for the system that we decide to implement. The first
prototype was designed on paper and the second prototype was digitized and
developed using Microsoft C# and other relevant Kinect libraries.

General Functionalities

Before we get to design the prototypes, some use case functionalities are being
considered when users get to use the system (i.e. what the users would do when at
each menu) They are as follows:

Note: The starting default menu is always the browser menu when the program is
launched.

When the user is in the Fitting room menu
● Access Browser/Catalog menu
● Access Photo catalog menu for previously taken pictures
● Access shopping cart wheel for clothes to “wear”
● Access Camera feature to take photos
● Add unwanted clothes to recycle bin
● Access Recycle Bin menu for previously discarded clothes

If the user is in the Browser/Catalog menu:
● Access Fitting room menu
● Access Men’s clothes and add them to cart
● Access Women’s clothes and add them to cart
● Access Newly released clothes and add them to cart
● Access Sales clothes and add them to cart
● Access Price of clothes for their information
● Access Photo catalog menu for previously taken pictures
● Browse through the shopping cart wheel
● Add unwanted clothes to recycle bin
● Access Recycle bin menu

If the user is in the Recycle Bin menu:
● Remove clothes permanently
● Restore the clothes back to the shopping cart wheel
● Go back to previous menu

5

If the user is in the Photo catalog menu:
● Browse photos
● Go back to previous menu

These user functionalities are largely unchanged (except for some minor tweaks when it
was ported over from the paper to digital format, see Section 4) when we implemented
the prototype. The core and essence of the system remains the same, and we target to
achieve a smooth experience for users when they access this system, whether from the
comfort of their homes or in shopping malls.

Paper Prototype

This is the first original prototype that we designed to cater to the user’s need and feel
when using the system.

The focus of the paper prototype is on the GUI and aesthetics design methodology,
whilst keeping in mind the target group’s using habits and demographics.

6

Wardrobe menu:

Above shows the example when the user hovers his hand over the icon categories at the left hand side.

7

Fitting room menu:

The fitting room menu when the user navigates into it. The user can choose to pick which clothing he likes to wear, and take a photo
from the camera icon above.

8

Recycle Bin menu:

The recycle bin menu with clothes selected. Users can exit this menu and navigate into other menus as well.

Reasoning for the particular GUI layout and placement of icons are at the end of this
chapter. Do note that the naming convention and shapes for the menus might have
changed when ported over to the digital format for some of them, but functionalities
remain mostly the same. For more information regarding the initial paper prototype
design, please refer to Annex D.

Digital Prototype

The paper prototype is converted into the digital format on the PC after some research
and findings on Kinect technologies. Basic functionalities are transferred from the paper
prototype over to the digital format, but more complex functionalities are simplified into
basic functions due to the early exploratory phase. Hence, more sophisticated functions
such as Facebook and Twitter sharing are not implemented in this phase. They will be
integrated, modified and enhanced in the next phase after testing and improving the
system. There are also some minor adjustments in the shape of the icons after the
design is being ported, since we took aesthetic design aspects into consideration when

9

the prototype is being ported over.More details of this justification is at the end of this
chapter.

Magic Mirror Use Case
The following use cases will be detailed to showcase how the program works when the
user interacts with it.

System: Magic Mirror
Use Case: Choose clothes to pick in browser menu
MSS:
1. User navigates into “Man” menu (hovers his hand across the icon)
2. System displays the Man clothing catalogue for view.
3. User hovers his right hand on the arrows (left or right arrows) to browse through the
men clothes catalog
4. System displays next/previous mens’ clothing based on user’s hand navigation over
the arrows
5. User found a clothing he likes and hovers his right hand above the “add to cart” icon
6. System adds the selected clothing into the shopping cart wheel.

Users may repeat steps 3 and 4 until they find a clothing they like. Users may repeat
steps 3 to 6 to pick other clothings.

10

*(a) at any time the user hovers his hand over other menus (fitting room, recycle bin,
photo catalogue)
*(a) 1. System redirects user to selected menu

System: Magic Mirror
Use case: Choose clothes to wear from cart in fitting room menu
Pre-cond: Clothes are present in shopping cart wheel
MSS:
1. User hovers his right hand on the arrows (up or down arrows) at the shopping cart
wheel to browse through previously selected clothes
2. System displays next/previous clothings based on user’s hand navigation over the
arrows
3. User found a clothing he likes and hovers his hand over to “wear” it
4. (System fits the clothing over to the user’s body in the display)
5. user hovers his hand over to camera
5. (a) 1. refer to camera use case.

User may repeat step 1 and 2 until he finds a clothing he wants to “wear”

*(a) at any time the user hovers his hand over other menus (fitting room, recycle bin,
photo catalogue)
*(a) 1. System redirects user to selected menu

11

System: Magic Mirror
Use case: Take self shot from camera
MSS:
1. User hovers his right hand on the camera icon
2. System (counts down from 3 seconds), then take a snapshot of the user with/without
the clothes on. Picture file is saved in local drive

*(a) at any time the user hovers his hand over the back button
*(a) 1. System redirects user to previous menu

System: Magic Mirror

12

Use case: Delete clothes permanently from the recycle bin
MSS:
1. User hovers his right hand on the arrows (up or down arrows) at the recycle bin
wheel to browse through previously deleted clothes
2. System displays next/previous deleted clothings based on user’s hand navigation
over the arrows
3. User found a clothing he wishes to remove permanently and hovers his hand over to
the “delete permanently” bin icon
4. System removes the selected clothing permanently

User may repeat step 1 and 2 to navigate clothings until he finds the one he wants to
delete.

*(a) at any time the user hovers his hand over the back button
*(a) 1. System redirects user to previous menu

Magic Mirror Architecture
The diagram below showcases the overview of the Magic Mirror Architecture. It consists
of 2 components, namely MagicMirrorMainWindow.xaml and
MagicMirrorMainWindow.xaml.cs

MagicMirrorMainWindow.xaml:
Provides a user friendly UI where the user can view and execute gestures for the
system to comprehend. This is the place where all button objects and background are
instantiated. The functionality of this class is stated at the first part of this chapter.

13

MagicMirrorMainWindow.xaml.cs:
Reads in commands/gestures from MagicMirrorMainWindow.xaml and execute them,
internally, while displaying the output back to MagicMirrorMainWindow.xaml.

Below depicts a semi-complete architecture of the system:

3rd party libraries(Red box):
Secondly, the system made use of 3rd party libraries (resources can also be found at
Microsoft Website), namely the Microsoft.Samples.Kinect.WpfViewers class. Within this
class, this system made good use of the KinectColorViewer class (display the Kinect
camera data) and KinectSensorChooser class (activate the Kinect sensor and all the
data streams). There are also other relevant .dll files installed in this project, for more
information, please refer to Annex B of this document.

The reason for using 3rd party libraries and .dll files is due to their efficient
implementation by Microsoft. There is also no need to “reinvent the wheel” when this is
available, hence we used their default implementation for the basic functionalities of this
project.

It is also possible to implement the sensor objects and display the camera data on the
screen, but with a 3rd party library available, smoother and better implementations can
be achieved. This thus will result in better feedback by the system to the users.

14

Sub-menu classes(light blue box):
The 4 classes contained inside this box(Man, Woman, NewClothes, Sale) are
responsible for handling the respective clothes ID when they are selected, how they are
selected, and how the clothes are stored, etc.

ScreenCapture.cs:
This is a self written class that allows the system to take screenshots of itself when
users activate it, and subsequently save it on a local disk. This is used for the camera
function that is outside the GUI display, and will interact with
MagicMirrorMainWindow.xaml.cs class to save the picture on a local disk.

Internal Structure
Below details a sequence diagram example when a user uses the camera function of
the Magic Mirror.

This example shows how the system reads the user’s hand gesture from
MainWindow.xaml, calling the eventhandler function ButtonScreenShotClick and
interpreting it, and subsequently calling another function sc.CaptureScreenToFile (sc is
a ScreenCapture object created earlier). It then returns a picture file that is saved inside
the local disk, and the feedback is propagated back to the main GUI where the user can
know from the blinking camera button.
Meeting User Requirements
With all the design aspects of the system (be it GUI design and internal software
design), the system has met user requirements to some extent based on their
demographics and user habits as explained earlier in Chapter 1.

15

GUI design:
Design principles are also taken into consideration when designing the GUI. We focus
on mainly two core principles: Aesthetical and Functional

Aesthetical
● Harmony
○ Same shaped buttons on left and right panels for a harmony combination effect to appear

visually satisfying
○ Dominant colors used are similar to allow a color harmony effect

● Gradation
○ Menu frames are designed with directional colour gradients for flow and continuity

Functional
● Layout and Symmetry
○ Layout of buttons and panels are ordered and neat
○ All buttons are kept symmetrical
○ Buttons grouped into specific areas helps with ordering

● Placement
○ Buttons with related functions have placements adjacent to one another to optimize usage
○ Options for a related purpose are placed together to optimize use

● Deleting
○ Trash bin icon and menu allows users to delete their clothes selection from the shopping cart
○ Users may also undo their deletion or permanently delete from the trash bin menu

Programme/Software design:

External libraries
● Usage of relevant libraries.
○ Need not reinvent the wheel.
○ Results in better implementation.

Feedback
● Icons are programmed to glow to give feedback to users
○ users will know that they have interacted with it (when their hands hover over the icons).

Fast execution time
● Feedback are given back fast to users.

16

○ Less time waiting will lead to less frustration when using the system.

Systematic classification of classes(OOP)
● Although general users may not know the internal structure of the programme, this feature is

important if another team is to continue our project, as understanding the whole system is much
easier.

Usage of Software design architecture
● Use cases, overall project architecture, sequence diagrams considered when system is

designed
○ More smoother flow of software design from top-down view
○ Easier understanding of the project by another developer team

Although the system appears functionally stable, some minor changes have been
carried out and changes are still ongoing. Further details are in the next few chapters.

In general, design and software principles applied in this system has been effective in
showing usability and functionality aspects to some extent, although the system is still a
work in progress and has got room for growth and improvement.

4. Re-modified Prototype

17

Above pictures showing the change in UI. (Left: old prototype. Right: new prototype)

Changes to initial design
Minor tweaks to the previous design prototype depicted in the earlier chapter were
made upon re-implementation. The goals of the system, in terms of its general
functionalities, however, remain intact. The changes and their respective justifications
are listed as follows:

Rearrangement of icons
Most notably, the browser menu has been edited. Namely, the thumbnails of clothes that
were in the middle were shifted to the right wheel menu, replacing the shopping basket,
while the shopping basket remains visible as an icon near its original position. There are
also some minor rearrangements of the other icons.

● Unnecessary articles on the screen were removed in an attempt to reduce the clutter,
which has inevitably formed, in the middle of the screen, due to the inclusion of multiple
functional features.

● This hopefully reduces the visual distraction imposed on the user, hence improving
user-experience.

Addition of cursor
A scaled cursor was introduced to enable users to reach for icons at the far ends of the
screen, beyond their natural stretch, more easily.

● The reason the icons were out of reach in the first place was due to the the sheer
quantity of icons needed, as well as the necessity for the icons to be of at least of a
certain spacing from one another to interact optimally with an average palm size.

● Hence it follows that this may be just an interim function, to be phased out if future
implementation makes use of a larger screen, allowing icons to be more centralised
within a radius centering on the user.

Evaluations

The goals of our “Magic Mirror” solution is to provide an interesting, gesture-
operated wardrobe application that will enhance users’ shopping experience. This
application should let users browse for clothes and apparels within the system and try
out those clothes on their “body” reflection. The displayed content will consist of icons,
information of clothes, and most importantly, the mirror showing the users’ reflections in
said clothes.

Based on informal testing amongst ourselves and feedback from our supervisor,
our current prototype does address the above issues effectively in terms of GUI design
and system architecture. More work, it is also indicated in the earlier chapter how the
prototype meets certain user requirements. However, more needs to be done in order to

18

make it more interesting and elegant. At its current stage, we believe it is still too crude
to meet the market demands for style. A more refined final prototype, thus, is necessary
to generate hype and enhance the real-life shopping experience.

5. Discussion

After some informal testing done on our prototype, and iterative discussions
amongst ourselves, as well as with our supervisor, we have come to some conclusions
regarding our system. While usability problems were explored and largely resolved for
the program (i.e. functionalities of buttons), user-experience remains an issue for the
Magic Mirror. With the next semester in mind, more features could be added to the
software, so as to enhance the user experience. These include:

● Smooth transitions between “browser”, “fitting room” and “recently discarded” screens
● SNS integration
● Transiting to a higher (1280 x 960) resolution, which will then eliminate the necessity of

the cursor.
● More fluid animations for transitions in the GUI (like clothes being browsed, etc)
● Integrating more Kinect hand movement gestures, including pushing and swiping

actions
● Refactoring and Optimization

Annex B (Important API)

dll installed in project:
Microsoft.Kinect.dll
Microsoft.Samples.Kinect.SwipeGestureRecogniser.dll
Microsoft.Samples.Kinect.WpfViewers.dll
Coding4Fun.Kinect.Wpf.dll

Libraries used in project:
Microsoft.Samples.Kinect.WpfViewers

· KinectColorViewer
· KinectSensorChooser
· KinectSkeletonViewer

Important functions in project(KinectProject.cs file):

Operation: void kinectSensorChooser1_KinectSensorChanged(object sender,
DependencyPropertyChangedEventArgs e)

19

Type: void
Description: Function where it enables all Kinect stream(colour, depth, skeleton)
Parameters: sender, event handler for dependency
Pre-conditions: main function called
Post-conditions: Kinect sensor object initialised, all streams enabled, smoothing enabled,
allFramesReady eventhandler enabled. Kinect sensor object starts after streams enabled.

Operation: void sensor_AllFramesReady(object sender, AllFramesReadyEventArgs e)
Type: void
Description: Storing image data from frame into array, getting first skeleton data,
Parameters: sender, event handler for all the frames that are ready
pre-conditions: kinectSensorChooser1_KinectSensorChanged function executed
post-conditions: image data will be retrieved and stored, get first skeleton data to be tracked, get first
camera point, scaling of tracked body part

Operation: Skeleton GetFirstSkeleton(AllFramesReadyEventArgs e)
Type: Skeleton
Description: returns the first skeleton data that is tracked.
Parameters: event handler for all the frames that are ready
pre-conditions: all frames of the Kinect must be ready(sensor_AllFramesReady already called)
post-conditions: returns the first skeleton data that is tracked.

Operation: void GetCameraPoint(Skeleton first, AllFramesReadyEventArgs e)
Type: void
Description: Function where the tracked skeleton data gets mapped from skeleton stream to depth
stream, then to colour stream. Also handles interaction with UI buttons
Parameters: skeleton object, event handler for all the frames that are ready
pre-conditions: all frames ready and the first skeleton is tracked
post-conditions: tracked skeleton data gets mapped successfully to colour stream via depth stream.
Checkbutton functions called as well for interactivity with icons.

Operation: private void ScalePosition(FrameworkElement element, Joint joint)
Type: void
Description: scales the tracked joint location to be displayed in the UI based on specified parameters
inside the function
Parameters: framework element(UI component), tracked skeleton joint
pre-conditions: all frames running
post-conditions: tracked skeleton joint scaled based on scaled parameters

Operation: private static void CheckButton(HoverButton button, System.Windows.Controls.Image
thumbStick)
Type: void
Description: handles the interactivity of the buttons in the UI
Parameters: button, thumbstick(this is the tracked body part)
pre-conditions: all frames running, tracked body part is in midpoint container of the button
post-conditions: hovering action of button executed(by 3rd party library, Coding4Fun.Kinect.Wpf)
Note: This function is also overloaded with other parameters.

20

Operation: private void StopKinect(KinectSensor sensor)
Type: void
Description: Stops the Kinect sensor
Parameters: Kinect sensor object
pre-conditions:Kinect sensor is running
post-conditions: Kinect sensor stopped.

21

