Module

Visualization

graphics concerns. In visualization, we are concerned with exploration of data, with its at-
tendant concerns of encoding strategies and so on. In computer-graphics, we may be more
concerned with rendering techniques.

T he visualization of data using GUI applications should be distinguished from other computer-

Before exploring the implementation of a 3D visualization, we look at some aspects of the con-
text within which the visualization is to be used.

8.1 The use of 3D

A successful visual metaphor has some analog with real-world physics. Some studies suggest
that a 10-fold improvement in item density can be achieved in using three dimensional displays.

The etherman display has proven effective in observation of networks with 50 or less nodes,
but becomes cluttered and unusable with more nodes on-screen. By extending the display into
the third dimension, it immediately becomes clearer. Our familiarity with spatial location allows
us to understand that objects further away will be smaller, and this reduces the visual clutter.
However if a far away object increases in size, we immediately notice, and can rotate the display
to observe more closely. We notice even if the far away object is still smaller (in screen real-
estate terms) than closer objects. This human cognitive behaviour becomes apparent as soon
as sufficient visual cues have been given to persuade the observer that the display is in three
dimensions.

For example: Figure 8.1 shows the output of an original program? to display tasks active on a
UNIX machine. The size of the spheres indicate the amount of memory used by each process,
the colour represents the owner. This display can be rotated and used to examine activity in a
way unattainable using standard system process viewing tools. The display has over 100 visible
nodes, but it is still easy to identify and investigate individual nodes.

Lhttp://opo.usp.ac.fj/"hugh/Public/Viz/ThesisWork/processes1

79

80 Visualization

Figure 8.1: Display of tasks in a multi-tasking environment.

8.2 OpenGL

OpenGL was originally the SGI in-house graphics system, but now is the most widely accepted
graphics standard, with chip, APl and OS support for all platforms. It is possible to code directly
using the OpenGL API, but more normal to use a toolkit which encapsulates some abstraction,
built on top of OpenGL calls.

Open GL is standard on all UNIXes and all versions of Windows since Win95. The API supports
functions for rendering, buffering, anti-aliasing, shading, colouring, texture-mapping, a display
list, Z-buffering and so on. To give the flavour of raw OpenGL programming, here is a small
application:

o IEE——

8.3 Java 3D, VTK - toolkits for 3D 81

| CODE LISTING teapot.c

#include <GL/glut.h>

voi d
Teapot (| ong grid)
{

/* ... code to construct drawist of teapot here. */

}

static void
Init (voi d)

glEnable (GL_DEPTH_TEST);

glLightModelfv (GL_LIGHT_MbDEL_LOCAL_VIEWER, local_view);
/* Lighting nodel, materials... */
}

static void
SpecialKey (int key, intx, inty)
{

swi t ch (key) {
case GLUT_KEY_UP:

rotX —= 20.0;

glutPostRedisplay ();
br eak;
/* Move in other directions */

}
}

static void
Draw (voi d)

{
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glPushMatrix ();
/* ... translations ... */
glCallList (teaList);
glPopMatrix ();
glutSwapBulffers ();

int
main (int argc, char **argv)

glutinit (&argc, argv);

type = GLUT_RGB | GLUT_DEPTH;
type |= (doubleBuffer) ? GLUT_DOUBLE : GLUT_SINGLE;
glutinitDisplayMode (type);
glutinitWindowsSize (300, 300);
glutCreateWindow (" TeaPot");
Init ();

glutReshapeFunc (Reshape);
glutkeyboardFunc (Key);
glutSpecialFunc (SpecialKey);
glutDisplayFunc (Draw);

glutMainLoop ();

8.3 Java 3D, VTK - toolkits for 3D

These systems are 3D OO toolkits embedded in Java and C++ respectively. The Java 3D appli-
cation programming interface (API) provides a set of object-oriented interfaces that support a
simple, high-level programming model.

The Visualization ToolKit (VTK) is an open source OO software system for 3D consisting of a
C++ class library, and several interface layers for Tcl/Tk, Java, and Python. VTK has a wide
variety of visualization and graphical functions, and has been installed and tested on both UNIX
and Windows.

82 Visualization

8.4 Case study - network traffic application

A user-requirement specification for a network traffic application may begin with something like:

This visualization is to assist network managers in planning and monitoring their
networks. It allows interactive exploration of network datalink traffic, and is in-
tended for use both for visualization of immediate-mode (real-time) data, and for
visualization of historical data. (The visualization is the same in each case, except
that time only travels forward in the immediate mode.)

The visualization will help answer questions such as the following:

Which segments carry the most traffic?

Which sections of the network are down?

At what times, and where do traffic bottlenecks occur?

What is the line utilization for different lines at different times?
What types of traffic are used most?

Would routing or switching be effective here?

For this network traffic application, the following elements are represented:

Background: - to convince the viewer that the display is three dimensional...

Nodes: - a computer, a network device...
Traffic: - the amount of traffic flow...

Protocol: - the type of traffic...

Errors: - errors in traffic could be further traffic protocols...
Trends: - for changes over time...

Association: - for network insights...

8.4.1 Node representation

In our chosen context, the nodes represent computers or network components such as hubs,
routers, bridges or switches. In locational or representational displays we may want to differen-
tiate between the type of node, but in the more abstract displays, there may be no need to do
this.

In Figure 8.2 we see a range of possible options for more concrete representations of nodes.

The computer represented in Figure 8.2(a) has about 2000 flat triangular surfaces (some of them
hidden). If we were visualizing a campus with (say) 500 computers using this representation,

8.4 Case study - network traffic application 83

(a) 2000 polygons (b) 84 polygons (c) 14 polygons

Figure 8.2: Concrete node representations.

Machine ‘ Rendering speed ‘ Computer (a) ‘ Computer (b) ‘ Computer (c) ‘
GraphicsWorkstation | 485,000 A/sec 0.485 frames/sec | 11.5 frames/sec | 69 frames/sec
PC1 30,000 A/sec 0.03 frames/sec | 0.71 frames/sec | 4.3 frames/sec
pPC2 11,000 A/sec 0.011 frames/sec | 0.26 frames/sec | 1.6 frames/sec

Table 8.1: Workstation redraw speed.

then our rastering engine has to recalculate the positions and shading of 1,000,000 polygons
each time it redraws the screen. This will happen even if the item is so far away that it only takes
up a single pixel on the screen.

A typical modern hardware rastering engine can calculate 485,000 shaded A/sec (triangles per
second), and hence our screen refresh rate would be about half a frame per second, giving a
jerky look. By contrast, the computer shown in Figure 8.2(c) has only 14 flat triangular surfaces,
giving a frame rate in excess of 70 frames per second.

Standard PCs often come with graphics cards that support pixel movement on screen, but their
overall performance in shaded A/sec is normally considerably below 485,000 polygons per sec-
ond. Table 8.1 gives the resultant frame rates for displaying onscreen 500 of the node represen-
tations in Figure 8.2.

It is clear from this table that if we wish our visualizations to be viewed on a range of platforms,
we must choose our node representations carefully to minimize rendering time.

Some representation methods for three dimensional objects allow different levels of detail. In
the VRML specification, a single object may be represented in different ways depending on how
much screen real estate it uses up. If the object is near you, it could be represented in detail, but
if itis a long way away, the representation could be as simple as a coloured square.

84 Visualization

The following VRML code represents a cone in two ways using an LOD (Level Of Detail) node.
If the distance from the user to the object is smaller than the first range value specified, then the
first version is drawn. If the distance is greater than the last range specified, the last version is
drawn.

#VRML V2.0 utf8
LoD {

range [20]
level [
#full detail 16 sided cone
Shape{
appear ance Appearance { material Mterial { diffuseColor 1.0 1.0 1.0}}
geonetry Extrusion{
crossSection[-1 0, 00, -1-2-10]
spine [1 00, 0.866 0 0.5 0.500.86, 001, -0.50 0.866, -
0.866 0 0.5,

-100, -0.8660-0.5 -0.50-0.866, 00 -1,0.50 -0.866,
0.866 0 -0.5, 1 0 0]
}
}
#l ow detail 4 sided cone, actually a pyramd
Shape{
appear ance Appearance { material Mterial { diffuseColor 1.0 1.0 1.0}}
geonetry Extrusion{
crossSection [-1 0, 00, -1 0]
-1

-1 -2
spine[100, 001, -100, 00-1, 10 0]

8.4.2 Traffic and protocol representation

A simple immediate way to represent traffic between two nodes is to just draw a line between
them. The nature of network communication on a typical Local Area Network (LAN) is such
that the resultant lattice is likely to be relatively sparse.

For example: at the datalink layer, on average, a workstation at any one time may only be
communicating with six or seven other datalink addresses - two broadcast addresses, (say) two
file servers, a WINS or DNS server. and a proxy. So - rather than having a lattice with ”27*"
interconnections, we have k(n — 1) interconnections, where % is some small integer. Even so, a
lattice with 500 nodes may have 3,000 interconnections and may look jumbled.

A line indicates source and destination, but not the amount of traffic. Three systems for this
purpose have been examined:

1. Colour coding (black through red to white for maximum traffic),
2. Line width, and

3. The length of partial lines, as discussed in Eick’s papers.

Using a linear increase in the line width appears most effective, although it does increase clutter.
It also leaves the colour information free for use in some other encoding. The linear scale needs a
sensible maximum, and experimentation has shown that a maximum width should be equivalent
to the size of the node.

A simple line or cylinder also does not tell which way the traffic is flowing. We evaluated the
following cues by modeling them in geomview, a geometrical modelling package.

8.4 Case study - network traffic application 85

Figure 8.3: Partial length representation of bi-directional traffic.

1. Separate arrows

2. Partial lengths

In Figure 8.3 we see the traffic between two computers, the size of the cylinder between the ma-
chines indicating the total amount of network traffic, and the two colours indicating the relative
amounts of traffic going each way. The nodes and cylinders themselves are coloured according
to the dominant protocol type.

8.4.3 Trend representation

Trends are sometimes difficult to find in large sets of data such as found in our application. Once
an examination of a visualization has indicated that a trend may be possible, it is normally easy
to frame the questions needed to verify the trend.

e “It looks like HTTP usage on these segments is increasing...”
(=Plot HTTP usage for the segment machines versus time).

e “Itlooks like HTTP usage is increasing when FTP usage is decreasing...”
(=Plot HTTP and (1-FTP) versus time).

Graphing continues to be the pre-eminent way of representing trends and the role of visualization
iIs to assist in finding the trends.

The four-dimensional visualization methods outlined and demonstrated by Olaf Holt and Nils
McCarthy in NDdemo (the fourth dimension being explicit time) could perhaps be used in trend
analysis, but the visualization is a little hard to use.

A final method is to attempt to encode previous visualizations on-top-of the current one (but
perhaps semi-transparent) - the idea here is one of visual echoes. In only some circumstances
can this be successful. There are two options:

1. Echoes are fixed on the screen, and we can move the visualization away from them, leaving
atrail like this: -+« . «®
In the worst case though, we have just ended up using one of our three display dimensions
for “time”.

86 Visualization

Figure 8.4: Locational view

2. Semi-transparent echoes are co-located with the visualization. In this case, we can only
show some of the history. We can show a reducing item, but not an increasing one.

8.4.4 Display

In Figure 8.4, we see an early locational view showing the fixed components of the visualization,
and modeled using geomview. It shows nodes for the computers, floor plans for the buildings,
and a transparent roof. The display uses the normal 3D navigation tools for adjustment. From the
display it is easy to identify the location of machines, and the display should be efficient enough
to support display and manipulation of the entire network (with 500 machines as a suitable goal),
and - yes - the computers are floating in mid air. (Since we are concerned with efficiency we
choose the simplest understandable visualization, and tables just become extra polygons to draw).

The visualizing tool supports rotation and translation of the display, so that the observer can eas-
ily focus on regions of interest. Suitable systems are found in the CosmoPlayer VRML viewer,
and in geomview. Note that this visualization is not dependant on the navigation or implemen-
tation method.

Cables and network infrastructure are not marked on the display, but the display does support
an aggregation-by-rule construct. This aggregation can be used to associate machines all on the
same segment, or all used by the same department.

8.4 Case study - network traffic application 87

Aggregation Nodes

=

Figure 8.5: Aggregation nodes

The components are chosen to be the best minimum complexity representation consistent with
fast updates. The frame update speed for the most complex display is better than 2 frames per
second.

Each node or aggregation in the overview display is clickable to turn it off or on. If a node is
turned off, its traffic no longer is displayed (either directly or as part of some aggregated traffic).
If an aggregation is turned off, any existing traffic displays to its nodes are removed. This facility
is used to allow fast reduction of visual clutter.

Aggregation nodes also have an aggregation switch, which allows them to combine all traffic for
subsidiary nodes. When this switch is on, lines connect the aggregation to its subsidiary nodes.

The aggregation node floats above its associated nodes. In Figure 8.5, we see two aggregation
nodes, with the one on the right aggregating traffic to and from all its subsidiary nodes. All
traffic to or from these nodes is displayed going to the aggregation node. The other nodes are not
aggregated, and display traffic directly.

Each node or aggregation in the overview display is clickable to identify specific information
about that node. This information does not replace the display, but appears in a separate window.
Initially this information may just be textual information such as the name of the node along
with traffic totals, but eventually, it is expected that the drill-down display will be the metaphor
display specified elsewhere, showing only the selected node in 3D, along with any associated
nodes.

88 Visualization

| Operating System | Web Browser VRML 2.0 Plugin |

IRIX Navigator 3.01S CosmoPlayer 1.0.2b3 or later
Communicator 4.04 | CosmoPlayer 1.0.2b3 or later
Communicator 4.07 | CosmoPlayer 2.1 beta

Macintosh Communicator 4.04 | CosmoPlayer 2.1 or later

WIN32 Navigator 3.01 CosmoPlayer 1.0 beta 3 or Intervista WorldView 2.0 or later
Communicator 4.04 | CosmoPlayer 1.0 beta 3 or Intervista WorldView 2.0 or later
MSIE 3.0 CosmoPlayer 1.0 beta 3 or Intervista WorldView 2.0 or later
MSIE 4.0 CosmoPlayer 1.0 beta 3 or Intervista WorldView 2.0 or later

Table 8.2: Systems which support the EAI.

8.5 3D VRML visualization implementation

The VRML visualizer is a relatively small Java program which must be loaded as an applet along
with a VRML view of the network. A small web page is created, and may be used to view the
visualization using a web browser such as Netscape along with the CosmoPlayer VRML plugin.

Unfortunately, not all combinations of web browser and VRML plugin work correctly with the
EAI, but the systems in Table 8.2 are known to work. These systems were current in 1999. This
year (2002) all the systems | tried at NUS appeared to work fine.

Load the default web page in the directory, and the visualization should be visible. To finish using
the visualizer, you must exit the browser entirely. If not, the Java applet keeps communicating
with the collector.

In Figure 8.6, we see an active VRML display within a browser. The computer nearby is gener-
ating a lot of traffic. In the distance we can see other nodes, and the roof and floors.

8.5.1 3DVNT VRML software

3DVNT includes software to create a default HTML web page for the VRML visualization. The
current default web page is like this:

<ht m ><head> <titl e>Sanpl e 3DVNT Page</title> </ head>

<cent er ><H1>Sanpl e 3DVNT Page </ Hl></center>

<center> <enbed src="root.wl" hei ght="600" wi dth="700"> </center>
<center> <appl et code="Vi ewl. cl ass" wi dt h="100" hei ght ="10" mayscri pt>
<PARAM nane="segnment " val ue="MACS"> <PARAM nane="port" val ue="9876">
<PARAM nane="host" val ue="opo. usp.ac.fj"> </ appl et> </center>

oK?

</htm >

8.5 3D VRML visualization implementation

89

http://opo/~hugh/Public/ThesisMorklnProgress/Cre

' |Mail[|What's New?| What's Caor?|| Destinations|| et Searchweicome|

Figure 8.6: 3DVNT view within Netscape browser.

90 Visualization

The root.wrl file which forms the basis of the VRML visualization is of the following format:

Cluster definition

Keyboard definition

Screen definition

Traffic sphere definition

PROTO CLUSTER [] {
PROTO KEYBOARD [] { ...
PROTO SCREEN [] { ...
PROTO GLOBE [1q{...
Some setting up declarations
Background { skyColor .4 .66 1}

Navi gationlnfo { type ["EXAM NE", "ANY"] speed 400 }

Vi ewpoi nt { position 0 400 O orientation 0 1 O 4 description "Canera 1" }
Lines, floors and roofs

DEF LINES Transform{ ... }

DEF FLOORS Transform{ ... }

DEF ROOFS Transform{ ... }

and then the nodes

e o

DEF nodel Transform{ ... }
DEF node2 Transform{ ... }
... and so on ...

Each node is of the following form:

DEF nodel Transform {
translati on 4350 150 4365
rotation 0 1 0 4.71238
children [
KEYBOARD {}
SCREEN {}
DEF nodelbox Transform {
children [
Shape {
appear ance Appearance { material DEF nodelboxcol or Material { diffuseColor 0.8 0.8 0.8 } }
geonetry Box { size 50 50 50 }

|
DEF nodelsphere Transform {
scale 111
children [
Shape {
appear ance GLOBE {}
geonetry Sphere { radius 1}

The Java visualyzer software maintains a link to a remote data collector, and uses the EAI to
modify the images in the VRML view.

8.5 3D VRML visualization implementation

91

Printed by Hugh Anderson

Mar 05, 99 11:51 Viewl.java Page 1/3
/1 using the VRML External Interface.
inmport java.applet.*
inmport java.aw.*;
inport java.util.*
import vrm .external.field. *;
inmport vrm .external.exception.*;
inport vrnl.external.Node;
inmport vrm .external.Browser;
inmport java.io.*;
inport java.net.*
public class Viewl extends Applet {
/1 public static final int DEFAULT_PORT = 9877;
Browser browser;
Socket s = null;
Datal nput Streamin = null;
String line;
public void init() {
System out. printl n(" Testinit()..") ;
}
voi d SocketStart () throws java.io.|OException {
String port = this.getParaneter("port");
int p = Integer.parselnt(port);
try {
String host = getCodeBase(). getHost();
System out . print| n(" Request camefrom:" + host);
s = new Socket (host, p);
}
catch (UnknownHost Exception e) {
System out . println("Nosocket:" + e);
public void start() {
int count=0;
Node node2sphere=nul | ;
Node appear =nul | ;
Event I nSFVec3f[] scal ei n=new Event | nSFVec3f [100]
Event | nSFCol or[] appear s=new Event | nSFCol or [100]
float[] val = new float[3];
int[] Iastval = new i nt[100],
int n;
String id,vl;
while (count != 100) {
scal ein[count] = null;
appears[count] = null;
lastval [count] = O;
count =count +1;
}
try {
Socket Start();
catch (java.io.|Oexception e) {
System out. println("Nosocket:" + e);
System out . printl n(" Test.start()...") ;
browser = (Browser) vrni.external.Browser.getBrowser(this);
System out . printl n(" Gotthebrowser:" + browser);
count = 0;
try {
in = new Datal nput Strean(s. getlnputStrean());
Thursday August 26, 1999 1/3

92

Visualization

Printed by Hugh Anderson

Mar 05, 99 11:51 Viewl.java Page 2/3
whi | e(true){
line = in.readLine();
if (line== null) {
System.out.printin(" Server closed connection.”);
br eak;
i f (line.regionMatches(0," n",0,1)) {

n = line.index0Of(32,2);
id = line.substring(2,n);

1 System.out.printin(">>>"+id+"<<<");
vl= line.substring(n+1);
1 System.out.printin("+++"+vl+"——=");

Integer a = Integer.valueOf(id);
Integer b = Integer.valueOf(vl);

i f (scalein[a.intValue()]== null) {
try
node2sphere = browser.getNode(" node'+id+" sphere");
System.out.printin(" Got the sphere node: " + node2sphere);
cat ch (InvalidNodeException e) {
System.out.printin(" PROBLEMS! node2sphere: " + e);
try{

scalein[a.intValue()] = (EventinSFVec3f) node2sphere.ge
tEventin(" sca€");

Sysfem.out.println(" Got the sphere scale node: " + appears[a.in
tvalue()]);
cat ch (InvalidNodeException e) {
System.out.printin(" PROBLEMS! (scalein): " + e);
try{
appear = browser.getNode(" node"'+id+" boxcolor");
System.out.printin(" Got the Boxcolor node: " + appear);

cat ch (InvalidNodeException e) {
System.out.printin(" PROBLEMS! appearance: " + e);

try
appears[a.intValue()] = (EventiInSFColor) appear.getEven
tin(" set_diffuseColor");

System.out.printin(" Got the Boxcolor color node: " + appears[a.i
ntValue()]);
cat ch (InvalidNodeException e) {
System.out.printin(" PROBLEMS! appearance color: " + e);
} o
i f (b.intValue()==-1) {
val[0] = (float)1.0;
val[1] = (float)1.0;
val[2] = (float)1.0;
el se{

val[0] = (float)(b.intValue()*20)+1;
val[1] = (float)(b.intValue()*20)+1;
val[2] = (float)(b.intvValue()*20)+1,;

}
scalein[a.intValue()].setValue(val);

i f ((b.intValue()==0) != (lastval[a.intValue()]==0)) {
i f (b.intValue()==0) {

val[0] = (float)0.8;
val[1] = (float)0.8;
val[2] = (float)0.8;

appears[a.intValue()].setValue(val);

2/3 Thursday August 26

, 1999

8.5 3D VRML visualization implementation

93

Mar 05, 99 11:51 Viewl.java

Printed by Hugh Anderson

} el se{
i f (b.intValue()==-1) {
val[0] = (float)0.1
val[1] = (float)0.1;
val[2] = (t)0.1
appears[a.intValue()].setValue(val);
} el se{

val[0] = (fl oat)0.0;
val[1] = (fl oat)1.0;
val[2] = (fl oat)0.0;

appears[a.intValue()].setValue(val);

lastval[a.intValue()]=b.intValue();

I Systemout. println(line);
}

cat ch (IOException e) { System.out.printin("

publ i c Browser getBrowser() {
r et ur n browser;

Thursday August 26, 1999

Page 3/3

Reader: " + e); }

3/3

94 Visualization

8.6 Summary of topics
In this module, we introduced the following topics:

e Visualization versus computer-graphics
e OpenGL

e (Briefly) Java3D, VTK

e VRML/Java/EAI

Tutorial 7 - questions for week 13 (April 3, 2002)

1. Find a minimal VRML file which constructs a solid cube.
2. Find minimal OpenGL display-list code to draw a cube.

3. Examine the Java code given for using the EAI to modify the VRML. How exactly does
the code get a reference to a VRML node?

4. Examine the Java code given for using the EAI to modify the VRML. How exactly does
the code modify a VRML node?

Further study

e sunsite for Java3D
e The EAI specification

