
Module 4
Scripting language - Tcl/Tk

S cripting is difficult to define. It has existed for a long time - the first scripting languages were
job control languages such as the shell program found in Unix systems. Modern scripting
languages such as Perl, Tcl, Python, awk, Ruby and so on are general purpose, but often they

have more powerful basic operations than those found in conventional general purpose computer
languages. For example it is common to have operators that perform regular-expression pattern
matching in a scripting language.

Scripting languages are normally interpreted, and the interpreter contains the routines to do the
pattern matching. One line of script code may be equivalent to 100 lines of C. However, the
overhead in having a (say) 3MB script interpreter is sometimes a problem, although less so these
days.

Perl is widely used, as it is found in active web page developments. Tcl/Tk is useful for GUI
development, allowing us to prototype new GUI applications quickly.

4.1 How not to use scripting languages

Don’t use to the exclusion of other languages!

Scripting languages are very good at some things, but sometimes frustratingly bad at other things.
For example, many scripting languages use associative, text-based array indexes, and so a simple
array lookup may take 1000 times longer than an equivalent lookup in a compiled language.

For this reason, it is common to mix scripting and other languages.

39

40 Scripting language - Tcl/Tk

4.2 Tcl/Tk

Wish - the windowing shell, is a simple scripting interface to the Tcl/Tk language. The language
Tcl (Tool Command Language) is an interpreted scripting language, with useful inter-application
communication methods, and is pronounced ’tickle’. Tk originally was an X-window toolkit
implemented as extensions to ’tcl’. However, now it is available native on all platforms.

The program xspin is an example of a portable program in which the entire user interface is
written in wish. The program also runs on PCs using NT or Win95, and as well on Macintoshes.

A first use of wish could be the following:

manu> wish
wish> button .quit -text "Hello World!" -command {exit}
.quit
wish> pack .quit
wish>

You can encapsulate this in a script:

 #!/usr/local/bin/wish8.1 −f

 button .quit −text " Hello World!" −command { exit}
 pack .quit

CODE LISTING HelloWorld.tcl

4.2 Tcl/Tk 41

If you create this as a file, and make it executable, you should be able to run this simple graphical
program.

4.2.1 The structure of Tcl/Tk

The Tcl language has a tiny syntax - there is only a single command structure, and a set of rules
to determine how to interpret the commands. Other languages have special syntaxes for control
structures (if, while, repeat...) - not so in Tcl. All such structures are implemented as commands.

There is a runtime library of compiled ’C’ routines, and the ’level’ of the GUI interface is quite
high.

Comments: If the first character of a command is #, it is a comment.

Tcl commands: Tcl commands are just words separated by spaces. Commands return strings,
and arguments are just further words.

command argument argument
command argument

Spaces are important:

expr 5*3 has a single argument
expr 5 * 3 has three arguments

Tcl commands are separated by a new line, or a semicolon, and arrays are indexed by text:

set a(a\ text\ index) 4

Tcl/Tk quoting rules :

The "quoting" rules come in to play when the " or { character are first in the word. ".." disables a
few of the special characters - for example space, tab, newline and semicolon, and {..} disables
everything except \{, \} and \nl. This facility is particularly useful for the control structures - they
end up looking very like ’C’:

while {a==10} {
set b [tst a]

}

42 Scripting language - Tcl/Tk

Tcl/Tk substitution rules:

Variable substitution: The dollar sign performs the variable value substitution. Tcl variables
are strings.

set a 12b a will be "12b"
set b 12$a b will be "1212b"

Command substitution: The []’s are replaced by the value returned by executing the Tcl com-
mand ’doit’.

set a [doit param1 param2]

Backslash substitution:

set a a\ string\ with\ spaces\ \
and\ a\ new\ line

Tcl/Tk command examples:

Procedures File Access Miscellaneous
proc name {parameters} {body} open <name> source <NameOfFile>

read <fileID> global <varname>

close <fileID> catch <command>

cd <directoryname> format <formatstring> <value>

exec <process>

return <value>

List operators:

split <string> ?splitcharacters?
concat <list> <list>
lindex <list> <index>
... + lots more

Control structures:

if {test} {thenpart} {elsepart}1while {test} {body}
for {init} {test} {incr} {body}
continue
case $x in a {a-part} b {b-part}

1The Tcl/Tk words then and else are noise words, which may be used to increase readability.

4.2 Tcl/Tk 43

Widget creation commands:

The first parameter to each is a ’dotted’ name. The dot heirarchy indicates the relationships
between the widgets.

% label <name> - optional parameter pairs ...
% canvas <name> - optional parameter pairs ...
% button <name> - optional parameter pairs ...
% frame <name> - optional parameter pairs ...
% ... and so on

When you create a widget ".b", a new command ".b" is created, which you can use to further
communicate with it. The geometry managers in Tk assemble the widgets:

% pack <name> where

4.2.2 Tcl/Tk example software

Here is a very small Tcl/Tk application, which displays the date in a scrollable window:

The code for this is:

 #!/usr/local/bin/wish8.1 −f

 text .log −width 60 −height 5 −bd 2 −relief raised
 pack .log
 button .buttonquit −text " Quit" −command exit
 pack .buttonquit
 button .buttondate −text " date" −command getdate
 pack .buttondate
 proc getdate {} {
 set result [exec date]
 .log insert end $result
 .log insert end \n
 }

CODE LISTING SimpleProg.tcl

44 Scripting language - Tcl/Tk

Here is tkpaint - a drawing/painting program written in Tcl/Tk:

The mainline of the source just creates the buttons, and packs the frame:

 #! /usr/local/bin/wish −f

 set thistool rectangle
 set thisop grow
 set thiscolour black
 button .exitbtn −bitmap @exit.xbm −command exit
 button .squarebtn −bitmap @square.xbm −command setsquaretool
 button .circlebtn −bitmap @circle.xbm −command setcircletool
 button .shrnkbtn −bitmap @shrink.xbm −command " set thisop shrnk"
 button .growbtn −bitmap @grow.xbm −command " set thisop grow"
 button .printbtn −bitmap @print.xbm −command printit
 button .colorbtn −bitmap @newcolour.xbm −command setanewcolour
 canvas .net −width 400 −height 400 −background white −relief sunken
 canvas .status −width 40 −height 40 −background white −relief sunken

 pack .net −side bottom
 pack .status −side right
 pack .squarebtn .circlebtn −side left −ipadx 1m −ipady 1m −expand 1
 pack .exitbtn .printbtn −side right −ipadx 1m −ipady 1m −expand 1
 pack .colorbtn .shrnkbtn .growbtn −side right −ipadx 1m −ipady 1m −expand 1

 bind .net <ButtonPress−1> {makenode %x %y}
 .status create rectangle 10 10 37 37 −tag statusthingy −fill $thiscolour
 set nodes 0; set oldx 0; set oldy 0;

CODE LISTING tkpaint1.tcl

Routines for dragging, scaling and printing:

 proc beginmove {x y} {
global oldx oldy
set oldx $x; set oldy $y

 }

 proc domove {item x y} {
global oldx oldy
.net move $item [expr " $x − $oldx"] [expr " $y − $oldy"]
set oldx $x; set oldy $y

 }

 proc altersize {item x y z} {
.net scale $item $x $y $z $z

 }

 proc printit {} {
.net postscript −file " pic.ps"

 }

CODE LISTING tkpaint4.tcl

4.2 Tcl/Tk 45

Node operations for tkpaint:

 proc makenode {x y} {
 global nodes oldx oldy thistool thiscolor
 set nodes [expr " $nodes+1"]

 set x1 [expr " $x−20"]; set y1 [expr " $y−20"]
 set x2 [expr " $x+20"]; set y2 [expr " $y+20"]
 if {[string compare $thistool " oval"] == 0} {

 .net create oval $x1 $y1 $x2 $y2 −tag node$nodes −fill $thiscolor
 }
 if {[string compare $thistool " rectangle"] == 0} {

 .net create rectangle $x1 $y1 $x2 $y2 −tag node$nodes −fill $thiscolor
 }
 .net bind node$nodes <Enter> " .net itemconfigure node$nodes −width 5"
 .net bind node$nodes <Leave> " .net itemconfigure node$nodes −width 1"
 .net bind node$nodes <ButtonPress−3> " beginmove %x %y"
 .net bind node$nodes <B3−Motion> " domove node$nodes %x %y"
 .net bind node$nodes <ButtonPress−2> " dothisop node$nodes %x %y"
 }

 proc dothisop {item x y} {
 global thisop
 if {[string compare $thisop " shrink"] == 0} {

 altersize $item $x $y 0.5
 }
 if {[string compare $thisop " grow"] == 0} {

 altersize $item $x $y 2.0
 }
 }

CODE LISTING tkpaint2.tcl

More routines:

 proc setcircletool {} {
global thistool thiscolor
set thistool oval
.status delete statusthingy
.status create oval 10 10 37 37 −tag statusthingy −fill $thiscolor

 }

 proc setsquaretool {} {
global thistool thiscolor
set thistool rectangle
.status delete statusthingy
.status create rectangle 10 10 37 37 −tag statusthingy −fill $thiscolor

 }

 proc setanewcolor {} {
global thiscolor

if {[string compare $thiscolor " black"] == 0} {
set thiscolor green

} { if {[string compare $thiscolor " green"] == 0} {
 set thiscolor blue

 } { if {[string compare $thiscolor " blue"] == 0} {
 set thiscolor red

 } { if {[string compare $thiscolor " red"] == 0} {
 set thiscolor orange

 } { set thiscolor black }
 }

 }
 }
.status itemconfigure statusthingy −fill $thiscolor

 }

CODE LISTING tkpaint3.tcl

46 Scripting language - Tcl/Tk

4.2.3 C/Tk

In the following example, a Tcl/Tk program is integrated with a C program, giving a very small
codesize GUI application, that can be compiled on any platform - Windows, UNIX or even the
Macintosh platform without changes.

 #include <stdio.h>
 #include <tcl.h>
 #include <tk.h>

 char tclprog[] = " \
 proc fileDialog {w} {\
 set types {\
 { \"Image files\" {.gif} }\
 { \"All files\" *}\
 };\
 set file [tk_getOpenFile −filetypes $types −parent $w];\
 image create photo picture −file $file;\
 set glb_tx [image width picture];\
 set glb_ty [image height picture];\
 .c configure −width $glb_tx −height $glb_ty;\
 .c create image 1 1 −anchor nw −image picture −tags \"myimage\";\
 };\
 frame .mbar −relief raised −bd 2;\
 frame .dummy −width 10c −height 0;\
 pack .mbar .dummy −side top −fill x;\
 menubutton .mbar.file −text File −underline 0 −menu .mbar.file.menu;\
 menu .mbar.file.menu −tearoff 1;\
 .mbar.file.menu add command −label \"Open...\" −command \"fileDialog .\";\
 .mbar.file.menu add separator;\
 .mbar.file.menu add command −label \"Quit\" −command \"destroy .\";\
 pack .mbar.file −side left;\
 canvas .c −bd 2 −relief raised;\
 pack .c −side top −expand yes −fill x;\
 bind . <Control−c> {destroy .};\
 bind . <Control−q> {destroy .};\
 focus .mbar";

 int
 main (argc, argv)
 int argc;
 char **argv;
 {
 Tk_Window mainWindow;
 Tcl_Interp *tcl_interp;

 setenv (" TCL_LIBRARY", " /cygnus/cygwin−b20/share/tcl8.0");
 tcl_interp = Tcl_CreateInterp ();
 if (Tcl_Init (tcl_interp) != TCL_OK || Tk_Init (tcl_interp) != TCL_OK) {
 if (*tcl_interp−>result)
 (void) fprintf (stderr, " %s: %s\n", argv[0], tcl_interp−>result);
 exit (1);
 }
 mainWindow = Tk_MainWindow (tcl_interp);
 if (mainWindow == NULL) {
 fprintf (stderr, " %s\n", tcl_interp−>result);
 exit (1);
 }

 Tcl_Eval (tcl_interp, tclprog);
 Tk_MainLoop ();

 exit (1);
 }

CODE LISTING CplusTclTk.c

The first half of the listing is a C string containing a Tcl/Tk program. The second part of the
listing is C code which uses this Tcl/Tk.

4.2 Tcl/Tk 47

On a Win32 system, we compile this as:

gcc -o CplusTclTk CplusTclTk.c -mwindows -ltcl80 -ltk80

On a UNIX system we use:

gcc -o CplusTclTk CplusTclTk.c -ltk -ltcl -lX11 -lm -ldl

And the result is a simple viewer for GIF images. The total code size is 57 lines. The application
looks like this when running:

48 Scripting language - Tcl/Tk

4.3 Summary of topics

In this module, we introduced the following topics:

� Practical programming in Tcl/Tk
� Other Tk language bindings
� Some sample programs

Tutorial 4 - questions for week 4 (Jan 28-Feb 1, 2002)

1. Given the frame .frm containing a canvas and a quit button, give sensible names for the
canvas and the button.

2. Modify SimpleProg.tcl to have an extra button clear above the quit button which clears
the date display.

3. Modify SimpleProg.tcl to have an extra button clear to the left of the quit button which
clears the date display.

4. What is the effect of the following tcl command? set a [exec ls]

5. What is the effect of the following tcl command? set a expr 3 + 4

6. Write a minimal Tk application which puts up a single File menu with a Quit item in it.

Further study

� http://www.pconline.com/~erc/tclwin.htm
� http://tcl.activestate.com/scripting/
� http://www.msen.com/~clif/TclTutor.html

