
CS3283

GUI Programming

Hugh Anderson
Department of Computing Science,

School of Computing
NUS

hugh@comp.nus.edu.sg

ii

Preface

The FOLDOC1 dictionary of computing defines a GUI as:

(GUI) The use of pictures rather than just words to represent the input and output
of a program. A program with a GUI runs under some windowing system (e.g. The
X Window System, Microsoft Windows, Acorn RISC OS, NEXTSTEP). The program
displays certain icons, buttons, dialogue boxes etc. in its windows on the screen and
the user controls it mainly by moving a pointer on the screen (typically controlled by
a mouse) and selecting certain objects by pressing buttons on the mouse while the
pointer is pointing at them.

Though Apple Computer would like to claim they invented the GUI with their Mac-
intosh operating system, the concept originated in the early 1970s at Xerox’s PARC
laboratory.

Theofficial NUS description of CS3283 is:

This module aims to teach the nuts and bolts of GUI programming. At the end of
the course, students will acquire practical knowledge in Windows programming and
techniques of programming interactive systems. Topics include Windows program-
ming, Motif, Tcl/Tk programming.

An interesting aspect of this course is that there is some emphasis on graphical visualization
methods. These notes are just an expanded set of overheads - you are asked to read supporting
papers, and maintain an active interest in GUI design and implementation. You may find the
latest copy of the notes at

http://www.comp.nus.edu.sg/˜cs3283/ftp/cs3283.pdf

It is my intent in this course to give lots of examples of different GUIs - successful and otherwise,
and to show the methods used to develop these interfaces.

1The Free-On-Line-Dictionary-Of-Computing is found at http://wombat.doc.ic.ac.uk/foldoc/index.html.

iii

http://www.comp.nus.edu.sg/~cs3283/ftp/cs3283.pdf

iv

Assessment:The proposed assessment may be modified slightly if the need arises, but currently
is as follows:

Assessment Weighting Grade

Assignments 35%
Ass1 Design Group 10
Ass2 Design, prototype Individual 20
Ass3 GUI implementation - Swing/MFC Individual 40
Ass4 GUI/Visualization implementation - Tk/Java3D Group 30

Tutorials 5%
Mid-term Closed book 10%
Final Exam Open Book 50%

Total marks 100%

Textbook: Unfortunately, no single textbook adequately covers the material presented in this
course, so I am providing a set of notes, which may be supplemented by readings from:

1. The User Interface Concepts & Design, Lon Barfield, Addison-Wesley (1993)

2. The JFC Swing Tutorial - A Guide to Constructing GUIs, Kathy Walrath & Mary Campi-
one, Addison-Wesley (1999)

3. Tcl and the Tk Toolkit, John K. Ousterhout, Addison-Wesley (1994)

Tools: You may wish to download and install the following toolkits, copies of which are found
at the course web site athttp://www.comp.nus.edu.sg/˜cs3283/ftp.

1. JDK Version 1.3

2. The Cygwin development system, including Tcl/Tk and debuggers

3. The Netbeans IDE, the glade GUI builder, and so on

Topics to be covered:During the course, we cover

• Fundamental GUI concepts (1 lecture)

• Design and programming techniques (3 lectures)

• Cross platform GUI development using Swing and Tcl/Tk (6 lectures)

• Visualization techniques (2 lectures)

Enjoy the course!

http://www.comp.nus.edu.sg/~cs3283/ftp

Contents

1 GUI concepts 1

1.1 How not to do GUI . 1

1.2 General rules of GUI. 2

1.2.1 Do’s and don’ts. 3

1.3 Types of applications. 3

1.4 Native environments/platforms. 4

1.4.1 MacOS . 4

1.4.2 X . 5

1.4.3 Win32. 7

1.5 Non-native environments/platforms. 7

1.5.1 Java. 7

1.5.2 Web browser interfaces. 8

1.5.3 Thin client systems. 9

1.6 Widget sets . 9

1.7 Summary of topics. .11

1.8 Sample Assignment - design. .12

2 Design 13

2.1 How not to design. .13

2.2 The design process. .14

2.2.1 Role of designer. .14

v

vi CONTENTS

2.2.2 Building blocks of user interfaces. 15

2.2.3 Tool support, use cases and modelling. 16

2.2.4 OO technology and design. 17

2.3 GUI specification and design. .18

2.3.1 A basis for GUI specification and design. 18

2.3.2 Formal GUI design. .19

2.3.3 Examples of GUI designs. 19

2.4 3D vizualization specification and design. 22

2.4.1 A basis for visualization specification and design. 22

2.4.2 Examples of visualization design. 22

2.5 Summary of topics. .27

2.6 Sample assignment 2 - design/prototype. 28

3 GUI application architecture 29

3.1 Architecture of GUI applications. 29

3.1.1 Standalone. .30

3.2 Shared file. .30

3.3 Shared database. .31

3.4 Web server applications. .31

3.5 Web server with active scripting. 32

3.6 Web server with Java applet. .32

3.7 Summary of topics. .33

4 First steps in GUI programming 35

4.1 How not to do GUI programming. 36

4.1.1 Direct calls to the X API. 36

4.1.2 Direct calls to the Win32 API. 37

4.2 OO GUI toolkits .39

4.2.1 Event handling. .39

4.2.2 GTK+ and glade. .40

4.2.3 MFC .41

4.2.4 Java/Swing. .41

CONTENTS vii

4.3 Web interfaces. .41

4.4 Scripting languages. .42

4.5 Summary of topics. .43

5 Scripting language - Tcl/Tk 45

5.1 How not to use scripting languages. 45

5.2 Tcl/Tk .46

5.2.1 The structure of Tcl/Tk . 47

5.2.2 Tcl/Tk example software. 49

5.2.3 C/Tk .52

5.3 Summary of topics. .54

6 Introduction to Java/Swing 55

6.1 How not to use Swing. .55

6.2 Getting started. .56

6.3 Swing programming .56

6.3.1 Pluggable look and feel. 57

6.4 Example application .58

6.5 Example applet. .59

6.6 Using the netbeans IDE. .60

6.7 Summary of topics. .61

7 Java continued ... 63

7.1 Layout management. .64

7.1.1 BorderLayout .64

7.1.2 BoxLayout .64

7.1.3 CardLayout .64

7.2 Creating menus. .65

7.3 Threads in Swing. .66

7.3.1 Creating threads. .66

7.3.2 Event dispatching thread. 67

7.4 Handling events. .68

viii CONTENTS

7.4.1 Event handlers. .68

7.4.2 Handling events. .69

7.5 Summary of topics. .70

8 Web interfaces 71

8.1 CGI - Common Gateway Interface. 71

8.1.1 CGI environment variables. 73

8.1.2 CGI forms .74

8.2 PHP .75

8.3 Java enhanced. .76

8.4 Summary of topics. .79

8.5 Assignment 4 - Implementation. 80

9 Visualization 83

9.1 The use of 3D. .83

9.2 OpenGL. .84

9.3 Java 3D, VTK - toolkits for 3D. 85

9.4 Case study - network traffic application. 86

9.4.1 Node representation. .86

9.4.2 Traffic and protocol representation. 88

9.4.3 Trend representation. .89

9.4.4 Display .90

9.5 3D VRML visualization implementation. 92

9.5.1 3DVNT VRML software. 92

9.6 Summary of topics. .98

10 MFC 99

10.1 MFC menus. .99

10.2 MFC Programming. .100

10.3 MFC class hierarchy. .101

10.4 Summary of topics. .102

CONTENTS ix

A Extra notes on Tcl/Tk 105

A.1 Tcl/Tk menus .106

A.2 The Tk canvas. .107

A.3 Assignment 3 - Implementation. .109

B Case study: GUI implementation 113

B.1 Perl/Tk code. .114

x CONTENTS

Chapter 1
GUI concepts

T he user interface for software has changed over the years. Early user interfaces were text
based, and normally had a fairly simple interrogative style - prompting the user to provide
needed information in a fixed order. The modern GUI provides for complex interaction

between the user and the application, and often relies on shared concepts or metaphors.

GUI programming is about the conceptualization, design and implementation of that part of a
software application which is concerned with user interaction.

1.1 How not to do GUI

I have decided to start with an example from here at NUS - the leave system for staff in the
department. Notice the dates I have entered, and the error message1:

The question is ... what did I do next?

1It says: “End date should be greater than or equal to start date ”.

1

2 GUI concepts

What do we learn from this? I think two points stand out:

1. Try out your applications before delivering them.

2. Ensure that error messages are precise, and indicate the next step.

During this course, I hope to give useful examples of interfaces and techniques - but equally
important is to see these poor examples -how-not-to-dothings. How about this one:

Often a single poor example can remind you of things to avoid - a picture of a poor GUI remind-
ing you of a whole range of things.

1.2 General rules of GUI

A key point to understand as we begin our investigation of GUI development is that effective
GUIs owe more to effective psychology than to effective programming. A graphical user inter-
face is not just windows, icons and so on - it also includes an abstract view - not visible, but
understood by the user. A successful GUI will have no clash between this view of the user inter-
face and the more concrete one involving icons, buttons and so on. The term ergonomics might
be used here - we hope for a correlation between the physical and conceptual ergonomics.

Another key point is that humans are not equipped to handle multiple things at one time, and this
leads us to try to keep interfaces simple and uncluttered.

Humans are particularly good at navigating systems which have some analogy to things they
know - for example the use of the desktop metaphor is well established and works well in most
cultures. Icons are also useful, but shouldn’t be abused.

To summarize:

1. Ensure correlation between What-u-c and What-u-think

2. KISS

3. Analogy, metaphor and icons

Always remember to include the U in GUI.

1.3 Types of applications 3

1.2.1 Do’s and don’ts

The following tips are gleaned from various sources, and are provided to help you know what
youshoulddo with your GUIs:

• Do follow standards - for examplequit is the bottom item on the leftmost menu and so
on. In general people prefer new applications to follow established standards.

• Do be predictable and responsive- events should have an immediate response, and
should operate in well understood and predictable fashion.

• Do be flexible- the interface should admit a wide variation of allowable sequences, rather
than forcing a particular ordering. An undo facility is often helpful here.

• Don’t forget the user - it is important to consider the pyschological, physical, and social
attributes of people when designing user interfaces for them.

• Don’t forget the machine/environment - but watch for nasty implementation details
showing up in user interfaces.

• Dont assume things- like “ the user will know how to...” - provide informative help and
clear actions.

1.3 Types of applications

Not all applications benefit from a GUI. Consider the area of embedded control systems (such
as lift controllers, washing machine controllers) - these systems certainly have a user interface
which requires careful design, but not necessarily a GUI. In this course, we will not consider this
sort of interface.

However, there are many application areas that do benefit from a GUI:

• Immersive applications: - games, medical imaging, avatar based CSCW and so on.

• Office and business applications:- for use by anyone.

• Interactive control systems:- flight systems, remote control and so on.

In addition, a newer application area involves the use of visualization to examine large data sets:

• Data mining: - delving into some set of data.

Finally, there is the use of GUI in WAP enabled devices and on PDAs. This is a specialist topic,
which will not be covered in this course.

4 GUI concepts

1.4 Native environments/platforms

Early user interfaces were primitive things which barely disguised the underlying machines -
nearly always text-based, and fixed in operation.

Contrary to popular public opinion, “Windows” is not the only GUI window system. The Mac-
intosh system, and the UNIX X window system both predate Microsoft’s GUI system, and each
have interesting features that have yet to be added to “Windows”. For example the UNIX X
window system allows a clear separation between the display and the processing, whereas “Win-
dows” display and processing must be on the same machine.

By far the most common GUI windowed environment on the desktop is the one found in Win95/98,
and our programming API for it is known as Win32.

1.4.1 MacOS

It is interesting to see the development of the Macintosh window system from an early prototype
in 1979 through to its current incarnation - MacOSX.

Note that this first prototype used folder tabs in a way that is no longer done, and did not appear
to use icons. Within a year, the first commercial Macintosh system had the following interface:

1.4 Native environments/platforms 5

Macintosh operating systems have a singleuser, singledisplayorientation, although the latest
version of the OS is built on top of a multi-user (UNIX) kernel. The latest version has some
interesting features - most notable is the application docking barmagnificationfeature:

1.4.2 X

The X window system2 is a sophisticated and well developed system which allows for multimedia
software and hardware components to be distributed around a network. At its simplest level, it
allows a program and its display to be on different computers.

The architectural view of X is a little peculiar. The designers view the display as central to the
system, and the software running on the display is called the X-server:

Clients

X display (server)

From the diagram, we can easily identify three essential components of X:

1. The X server - providing the high resolution graphical display(s3), keyboard and mouse.

2. The X protocol - providing standard communication methods between the distributed
software components.

3. X clients - programs with graphical display output, running on (perhaps) many machines.

2The system is called X, or the X window system. UNIX weenies insist that it isnot called X-windows!
3Mechanism, not policy!

6 GUI concepts

There are two other components:

• The Window manager(s)- providing decorations around each window.

• The Display manager(s)- providing access to the system.

The display manager controls access to displays. The diagram shows a simple display manager
allowing selection of one of a number of hosts. When you select a host, you are presented with
a login window for that particular host.

or

There are of course other display managers, and login windows. There are also many different
window managers:

or

1.5 Non-native environments/platforms 7

1.4.3 Win32

Win32 is the 32 bit successor of the Win16 API - the original Windows Application Programming
Interface. Win32 is a generic name for 4 (slightly) different APIs - providing standard function
calls for accessing the GUI, file system, processes and so on. The Win32 API on Win95 is a
subset of those on WinNT, so applications written for Win95 should be portable to WinNT. The
reverse is not always true, but most WinNT applications can run on Win95/98.

The normal way for you to access Win32 functions is by using a precompiled library from a C
program. C programmers include a set of header files, and applications link at run time to the
Win32 DLLs.

The API for Win9X has three sections:

• KERNEL: - the low level kernel services in user32.dll.

• GDI: - Graphics Device Interface - drawing and printing in gdi32.dll.

• USER: - User Interface controls, windows and messaging services in kernel32.dll.

In Windows NT these services are kernel calls.

1.5 Non-native environments/platforms

The following systems can be used to provide a consistent environment that is independant of
the host operating systems:

• Java/Swing

• Web browser interfaces

• Thin client systems

Each is discussed in turn in the following sections.

1.5.1 Java

Sun Microsystem’s development of Java has always been done with portability issues in mind.
The JVM (Java Virtual Machine) is available on all platforms, and runs reasonably well on them.
There are some unresolved issues - particularly in the areas of security, fonts and efficiency - for
example the Blackdown distribution of Java for Linux is reputed to be about ten times slower
than Sun’s in some areas of its use.

8 GUI concepts

However - despite this - it is relatively easy to write a portable application - for delivery either as
an applet in a web page, or as a standalone application. Theswingwindowing toolkit is the Java
API for GUI development.

The all-java standalone application shown above is used for automated laboratory assessment of
programs.

1.5.2 Web browser interfaces

The first web servers provided static pages of hypertext and images, but fairly quickly, demand
led to the specification of a standard for active page generation - known as CGI - the Common
Gateway Interface.

CGI specifies how to pass arguments to a program on a server as part of the HTTP request.
The program might then look up a database before generating some HTML to pass back to the
browser. A CGI program can be any program which can accept command line arguments - Perl
is a common choice for writing these programs.

You should be aware that poorly constructed CGI scripts can result in security problems for the
server, and also that there is normally a process overhead for each script started. More recently
there have been various other web/interface techniques - for example the use of:

1. Java applets, to allow processing at the browser,

2. PHP (a server-side, cross-platform, HTML-embedded scripting language), or

3. ASP (a scripting environment for Microsoft Internet Information Server in which you can
combine HTML, scripts and reusable ActiveX server components).

In this course we will look at the use of Java in this role.

1.6 Widget sets 9

1.5.3 Thin client systems

A relatively recent development involves moving the X-server (or equivalent) from the machine
with the display to a larger machine, and then using a smaller computer to actually display the
data. Here is a thin client written in Java, running as an applet in a web page:

1.6 Widget sets

One definition of awidgetis:

[possibly evoking “window gadget”] In graphical user interfaces, a combination
of a graphic symbol and some program code to perform a specific function. E.g.
a scroll-bar or button. Windowing systems usually provide widget libraries (sets)
containing commonly used widgets drawn in a certain style and with consistent be-
haviour.

When we use different widget sets, our applications have a slightly different look-and-feel.

10 GUI concepts

The following two screenshots are of the same application - the first linked with the Motif widget
set, and the second with the Athena Widget set - notice the differences in the look of the two
applications.

Motif:

Athena:

The ICS widget databook has a series of useful widgets to extend the basic Motif set, including
ones for bar graphs and so on.

1.7 Summary of topics 11

1.7 Summary of topics

In this module, we introduced the following topics:

• Rules of GUI

• Types of applications

• Windowing/GUI environments

• Widgets

Questions for Module 1

1. List three rules of things-to-avoid when developing GUI applications. For each rule, give
an example which demonstrates the problem.

2. State one way in which an application written for the X-window environment may be
different from an application written for a Win32 environment.

3. Find one example of a GUI application with a clear use of metaphor. Describe the appli-
cation and the metaphor.

4. Research: What is a DLL?

5. Research: Why is java considered more secure for use in a distributed environment than
(say) C?

6. Research: What is the principal use of PHP?

Further study

• The hall of shame:
http://www.iarchitect.com/mshame.htm.
This link appears to be dead, but a search of the Internet reveals copies of parts of it, and
other similar web sites:
http://www.umlchina.com/GUI/Tab.htm.
http://www.umlchina.com/GUI/Controls.htm.
http://www.umlchina.com/GUI/Termino.htm.
http://www.umlchina.com/GUI/Misplaced.htm.
http://pixelcentric.net/x-shame/.
http://pixelcentric.net/x-shame/moz.html.

• A brief history of HCI:
http://www.comp.nus.edu.sg/˜cs3283/ftp/BriefHistoryOfHCI.ps.gz.

http://www.iarchitect.com/mshame.htm
http://www.umlchina.com/GUI/Tab.htm
http://www.umlchina.com/GUI/Controls.htm
http://www.umlchina.com/GUI/Termino.htm
http://www.umlchina.com/GUI/Misplaced.htm
http://pixelcentric.net/x-shame/
http://pixelcentric.net/x-shame/moz.html
http://www.comp.nus.edu.sg/~cs3283/ftp/BriefHistoryOfHCI.ps.gz

12 GUI concepts

1.8 Sample Assignment - design

This is just a sample assignment. Assignment 1 for this semester’s CS3283 will be distributed in
class.

Task:

• Identify a GUI application which you think you can improve.

• Design an improvement.

• State how you wouldtestthe improvement.

Deliverables:

• A title page containing your name(s) and matriculation number(s).

• A two to five page document containing

– A description of the application - perhaps with screenshots.

– A description of that part of the application that needs improving, clearly statingwhy
you think it needs to be changed.

– A description of the improvement that you would make, clearly statingwhyyou think
this change would be better.

– A testing methodology for the change that you want to make.

Note that this assignment does not require you to implement any change, just to describe one that
you would make.

Chapter 2
Design

B efore investigating more detailed processes of design, it is worthwhile to consider more
general issues related to design. For example, please remember that we often don’t bother
designing small things (a snack before lunch, the seating arrangement at the dinner table),

but for large things, we insist on prior design (an HDB apartment building, a bridge...). Suc-
cessful design approaches an art form, involving partially understood balancing tricks with many
competing constraints. The more design that you do, the better you get at it, but it is hard to
discover the points that result in a successful design.

User Interface (UI) design has one identifying characteristic that separates it from other design
areas - the principal concern is with theuserof the system, not the constraints of the hardware.
This leads us to a common mindset for a UI designer - the UI designer must primarily consider
thehuman factorwhen designing systems.

2.1 How not to design

Consider the following UI for searching for property listings. It has someupsettingqualities.

13

14 Design

In addition, you might also consider the utility of regular expression pattern matching for files
(compared with the point and click interface). Why is“ls *.c” better than point and click?

In summary, I think very good rules to keep in mind are to:

• Avoid doing things just because youknowhow to do them.

• Make your designs be driven by requirements.

2.2 The design process

The design process involves both

• specification of the behaviour of a product, and

• specification of the detailed techniques used to implement the product.

In each area, there exist a range of tools and techniques that can benefit any software product,
although there is no clear agreement1 on which methodologies should be used. Having said this
though, it must be emphasized that designshouldbe done, and it should mostly be donebefore
implementation. (I say mostly, because experience shows us that the design often undergoes an
iterative phase, where the design changes as more and more of the implementation is done.)

2.2.1 Role of designer

A software designer cannot operate in isolation. The software designer interacts with people
(the users and implementers), and as well has a responsibility to tie designs back to specific
requirements (from the original analysis), and specific constraints (from the implementers, and
users).

The design must be a readable, understandable, implementable document.

To achieve this, the designer usesabstractionextensively, at many different levels, and must be
prepared to arguefor the use of a particular abstraction.The design of graphical interfaces is no
different.

The base abstraction found in GUIs that does not appear elsewhere is theiconic abstraction -
something is callediconic if it has some likeness to what it denotes. The simplest use of icons is
when we represent a text file on disk using an icon that looks like a sheet of paper:

1By contrast, many other engineering disciplinesdohave generally accepted techniques to be used.

2.2 The design process 15

Here there is a clear relationship between the icon and the text file. We also have higher level
abstractions - for example, the desktop and wastebasket metaphors. The designer needs to be-
come familiar with successful abstractions like these, so that they can be used and so that new
abstractions may be evaluated.

2.2.2 Building blocks of user interfaces

Beginning with the visible items, we have a range of widgets from the very simple iconic ones
(such as the button widget), through to more complex ones:

Button Testbox Label

Menu Checkbox Radiobutton

Scrollbar Graph Directory Tree

In addition, we have invisible components - for example we use container widgets to construct
more complex interfaces from a group of simpler ones:

Finally, you should remember sundry GUI components such as cursors, fonts, and colours, and
well understood GUI actions such as - drag-n-drop, cut-n-paste.

16 Design

2.2.3 Tool support, use cases and modelling

In general, the designer somehow imagines and proposes common scenarios2 for the use of the
software, and

1. checks to see if the scenarios areconsistent, andcomplete,

2. tries out the scenarios on people to see if they work,

3. tests the scenarios and attempts to quantify their behaviour.

There are a range of tools we can bring to bear on these design problems. For example:

State-diagrams: - Used to specify and check the behaviour of a user interaction.

A simple older-style user interface forfind-and-replacemight involve first asking for the pattern
of text to find, and then for text to replace it with. Astate-diagramwould look like this:

Specify
Pattern Change

Specify

Doit!

Enter

Escape

Cancel

Escape

Enter

Enter

Note the states, and the labelled transitions. Consider this GUI-stylefind-and-replace:

The state-diagram for this might be quite complex - perhaps something like this:

Idle

Change
Specified

Pattern
specifiedSpecified

Do change

Pattern
specified

Change

unspec
unspec

unspec

unspec

spec

spec

unspec

spec

unspec

spec

Doit

Cancel

Cancel

Doit

2Scenarios=Use_cases. Use_cases=scenarios.

2.2 The design process 17

Note that in this state diagram, the states are different, and have different meaning - as are the
transitions - which are no longer single key presses - they may now involve complex functions.
This focus on detail related to the state of a dialog is not trivial. There is a well known example
of a poorly constructed dialog, that contributed to the death of cancer patients in the US see [4].

Modelling: - Used to demonstrate the UI, without actually implementing thecoresoftware.

Dan Bricklen’s demo program (a demo copy is available athttp://www.brickin.com/) is worth
looking at for modelling a user interface. There is an amusing demo calledchiapaint .

It is also relatively easy to model a new UI using Tcl/Tk.

2.2.4 OO technology and design

The principle features of OO technology [5] are as follows:

1. Abstraction,

2. Information hiding,

3. Inheritance,

4. Polymorphism, and

5. Genericity

The inheritance and polymorphism features of 00 technology have supplied a mechanism for
creating/updating and maintaining effective software libraries. These libraries contain generally
useful classes instead of parts of old projects, and it is alibrarian’s duty to ensure the general-
ization3 of the classes.

Once a software library is in place, we can look in the library to find what we already have, and
what is ’close enough’. For example the ’people’ class may already exist, and we may decide
that a generic ’combiner’ class is close enough to ’booking area’ to warrant its use.

3For example: classes ’airline’, ’booking’, ’person’, ’flight’, ’batchmode’ rather than class ’batch-
mode_airline_booking_system’.

http://www.bricklin.com

18 Design

The next stop is to detail the features of each of the new classes. All of this is design, and is
almost effortless - if we start detailing features and find it is ’all wrong’, we can just step back to
re-arranging/factoring the classes.

2.3 GUI specification and design

GUI design has to meld four possibly conflicting elements:

1. Software model - the structure of our data and overall architecture of the software devel-
oped during the normal system design process.

2. User profile - the types of targetted users of the product, with their specific characteristics.

3. Product perception - the mental image developed by an end user in relation to the use of
the GUI product.

4. Product image - the specification of the GUI - screenshots, descriptions or specifications
of it’s behaviour.

In general, a GUI is successful when the product perception matches the product image.

Pressman’s [6] principles for general software specifications need some modification for visual-
ization and GUI specification. We need not, for instance, concern ourselves with“the context in
which the software inter-operates with other system components”. Our concern is to:

Develop a functional and behavioural response specification in terms of its cognitive
aspects.

The functional and behavioural response specification is turned inside-out from a normalsoft-
warespecification. With asoftwarebehavioural model, we start with an analysis of states, events
and actions, and specify the expected views as a result. With GUI specification, our orientation
is to start with the views, and specify the states, events and actions associated with those views.

2.3.1 A basis for GUI specification and design

One of the most characteristic elements of many GUI programs is the use of the event-driven
software architecture. When the designer adopts this paradigm, the GUI program is viewed as a
series of response routines for particular events.

In addition, the software may require asynchronously running components. An implementation
may use a number of threads for the asynchronous tasks, along with a set of event response rou-
tines. For example, a word processor may asynchronously spell-check a document, underlining
questionable words.

2.3 GUI specification and design 19

A possible outline structure for a GUI design document might be:

1. User requirement

2. Environment

(a) Software constraints

(b) Other constraints

3. Interface design

(a) Overview

(b) Interface description

i. Prototype screens
ii. Functional specifications
iii. Behavioural specifications

4. Testing methodology

Note the example of a design document along these lines in Appendix A.

2.3.2 Formal GUI design

Some aspects of GUI design can be easily formalized. For example, in Section 2.2.3 we saw
the state-diagram used to define and describe the interaction behaviour of a user interface. Z,
a specification language, has been used toformally specify complex GUI interactions. There
are supporting Z tools which can then automatically test the specification for completeness and
correctness with respect to some more abstract specification.

More details may be found in [3], and the handout [1], found at

http://www.cs.virginia.edu/˜jck/publications/zum.97.pdf

It describes the use of formal specification tools and notations in constructing the interface to a
nuclear reactor.

2.3.3 Examples of GUI designs

Here are some examples of different designs for similar things, with some brief comparative
comments:

http://www.cs.virginia.edu/~jck/publications/zum.97.pdf

20 Design

Dialog boxes for find-and-replace:

This dialog box in theLYX word processor was confusing the first time I tried it:

This one is fromnedit . The check buttons are a bit confusing, but the up arrow recall of previous
strings works well.

This is theWord dialog box.

2.3 GUI specification and design 21

File system navigation:

The familiarwin98 file manager borrows the basic concept from MAC file managers, and is quite
easy to use.

A more explicit directory tree style file manager. The expanding arrow tree list on the left is a
nice feature.

SGI have a (freeware) file manager calledfsn , which briefy appeared in the movie “Jurassic
Park”. It has a large computational overhead, but is fun to use.

22 Design

2.4 3D vizualization specification and design

Visualization design has a similar structure to GUI design - a difference being the focus on the
use ofanalogy.

2.4.1 A basis for visualization specification and design

Eick [2] proposes the following guidelines as a basis for engineering effective visualizations:

1. Focus the visualization on task-specific user needs.

2. Use a whole-database overview display.

3. Encode the data using colour, shape, size, position.

4. Use drill-down, filters and multiple linked views in a direct manipulation user interface.

5. Use smooth animation to show the evolution of time varying data.

With visualization specification, our orientation is again to start with the views, and specify the
states, events and actions associated with those views. There is an example of design along these
lines in Appendix B. Here is a possible outline for a visualization specification:

1. User requirement

2. Environment

(a) Software constraints
(b) Other constraints

3. Interface design

(a) Overview
(b) Interface description

i. Drill-down and other displays
ii. Encoding

4. Testing methodologies

2.4.2 Examples of visualization design

There are many examples of data visualizations, and I have just taken some from the world of
network management - starting from simple graphical displays through to 3D images.

2.4 3D vizualization specification and design 23

Graphs and diagramming:

Tkined4 is a freely available SNMP management station. It centers around an effective graphical
network editor which can be used to diagram a network.

Unusual display - compact visualization:

Etherman is a medium sized monolithic application which runs on a UNIX host.

When running,etherman collects and displays graphically the ethernet traffic on the directly
connected network. In the figure the display shows several hosts communicating with a range of
protocols. A host to the bottom right of the display is generating a lot of traffic.

Etherman uses a visual metaphor associated with an easily understood model involving fluid,
tanks and fluid flow. It gains leverage from human cognition of the behaviour of simple physical
models.

4http://wwwhome.cs.utwente.nl/˜schoenw/scotty/

http://wwwhome.cs.utwente.nl/~schoenw/scotty/

24 Design

3D graph:

Nettop is a graphical display from SGI which indicates network traffic flow between systems.
The display presents 3D bar graphs of network traffic. It can show the top sources and destina-
tions of traffic on the network, or it can show the sources and destinations of your choice. It can
also show the traffic on nodes, each with its filter.

Abstract 3D view - SeeNet:

SeeNet was developed as part of a continual research effort in network data analysis at AT&T.

eickrab eick

> <

Half Lines

Both Active

Show Nodes

Outside OK

Help

All On

All Off

Zoom

Unzoom

Variables--> <--
weights 35

-2
1

29
56

84
111

20.00 111.00
weights

Short

Long

Thin

Wide

THYST-L

TheDailyQuote

XspcDlv

ballman

bdewbank

bld

blewett

ches

cope

dep

dla

dorene

ees

eick

em1

express

exptools

gen

hartman
hastings

info-hol-request

jcr

johnson

kss

kwc

laddlas

lda

maa

mckinzie

mferber

ni-fwd

north

otto

pkohorn

postmaster

rab

ralph

root

sml-redistribution-request

steffen

techlib
televi

tmd

tuckey

uucp

votta

wth

ycw

SeeNet is in daily use by AT&T engineers, and has many user interfaces - including this spring-
tension 3D model, shown above. This figure shows an analysis of e-mail usage, and indicates
that the user at the center (Hastings) is the e-mailhubof the department.

2.4 3D vizualization specification and design 25

Abstract 3D view - Flodar platter display:

Theflodar (Flow Radar) system [7] was developed at the National Security Agency (NSA) for
continuous monitoring of large numbers of NSA servers. The designers have used a web based
system for the display, interrogating a database that collects data asynchronously from remote
agents.

In the platter display, over a 24 hour period, cylinders representing servers move to the center of
the platter. When a server signals, its cylinder moves to the outside of the platter. In this way
servers that require attention move to the center of the platter.

The principal use offlodar is to alert operators to servers that have not signalled the database in
a long time.

26 Design

3D world-view:

In this example (again from the flodar system) we see abuilding/locational view - the servers
are represented by cylinders. When the server signals the database, the cylinders are made nearly
transparent. As the servers age, they become more opaque.

2.5 Summary of topics 27

2.5 Summary of topics

In this module, we introduced the following topics:

• The designer’s mindset

• Specification and design, tools and methods

• Examples of successful designs

Questions for Module 2

1. Give at least four other widgets not mentioned in section 2.2.2.

2. Give one other well-understood GUI action not mentioned in section 2.2.2.

3. Differentiate between radiobuttons and checkboxes. When would you use a radiobutton?
When would you use a checkbox?

4. Describe how you might attempt to evaluate two competing designs.

5. Research: Study a visualization application which has an abstract view - evaluate the ab-
straction - is it successful or not?

6. Consider the 3D graph shown in the nettop application. Can you think of another use for
this visualization?

7. Briefly outline a specification for a GUI application intended to manage a room booking
system at NUS.

8. Briefly outline a specification for a visualization application intended to manage the flow
of containers through the port in Singapore.

Further study

• Visualization:
http://www2.iicm.edu/ivis/ivis.pdf.

• Formal specification:
http://www.comp.nus.edu.sg/˜cs3283/ftp/ObjectZToSpecifyWebInterface.ps.gz,

http://www.cs.virginia.edu/˜jck/publications/zum.97.pdf,
http://www.comp.nus.edu.sg/˜cs3283/ftp/SurveyOfUILanguages.ps.gz.

• Pressman [6] on UI design pp.395-406.

http://www2.iicm.edu/ivis/ivis.pdf
http://www.comp.nus.edu.sg/~cs3283/ftp/ObjectZToSpecifyWebInterface.ps.gz
http://www.cs.virginia.edu/~jck/publications/zum.97.pdf
http://www.comp.nus.edu.sg/~cs3283/ftp/SurveyOfUILanguages.ps.gz

28 Design

2.6 Sample assignment 2 - design/prototype

Task:

Your task is to develop the design of a GUI interface for a system for room booking at NUS. The
system should provide for logging in, selecting a room or choice of rooms, a timeslot or choice
of timeslots, submitting a request and displaying the results.

Deliverables:

• A title page containing your name and matriculation number.

• A five to ten page design document containing

– A brief summary of the user requirement, and environment

– An overview of the interface design

– A detailed description of the interface design, including

∗ Prototype screens
∗ Functional specifications
∗ Behavioural specifications

– A testing methodology for the interface.

Note that this assignment does not require you to implement the application, just to design one.

Chapter 3
GUI application architecture

M odern GUI applications may be composed from a number of different software compo-
nents. For example, a GUI application may access remote databases, or other machines,
or it may be standalone. In this section we characterize some of the common software

architectures for GUI applications.

3.1 Architecture of GUI applications

We can categorise GUI applications in many different ways, but the overall communications
architecture is of interest, and helps us select tools and development strategies. One classification
is:

• Standalone

• Shared file

• Shared database

• Web based

– Simple

– Scripting

– Java

29

30 GUI application architecture

3.1.1 Standalone

A standalone GUI application runs on the user’s PC, and reads and writes a local disk for files
or (in a very general sense) databases. Note that Microsoft Access programs are normally of this
sort.

High

Disk

Speed
High

Disk

Speed

3.2 Shared file

A GUI application runs on the user’s PC, and reads and writes a shared disk for files or (in a
very general sense) databases. Note that Microsoft Access programs may be of this sort, but that
Access files are generally not shareable.

FileServer High

Disk

Speed

3.3 Shared database 31

3.3 Shared database

A GUI application runs on the user’s PC, and reads and writes a local database. Note that when
your application uses a database like Oracle or Microsoft SQL server, it is likely to be of this
sort.

DatabaseServer High

Disk

Speed

3.4 Web server applications

A VERY simple GUI application might be constructed using a series of interlinked web pages
found on a server, and relying on a web browser on the client PCs. Help documentation applica-
tions are sometimes of this sort.

Web Browser Web Browser

WebServer

32 GUI application architecture

3.5 Web server with active scripting

A more complex GUI application might be constructed using a series of interlinked web pages
found on a server, and relying on a web browser on the client PCs. However, by using the
Common Gateway Interface, or some other scheme of server-side scripting, we can return a
program-derived web page to the application. CGI and PHP are both examples of this technique.

Web Browser Web Browser

WebServer PHP

CGI
High

Disk

Speed

3.6 Web server with Java applet

An even more complex GUI application might be constructed using a series of interlinked web
pages containing Java applets. The advantage of this, is two fold.

1. The processing load on the web server may be reduced.

2. The Java applet can directly1 communicate with a database server.

Web Browser
+ Java applet

WebServer

DatabaseServer High

Disk

Speed

1Note that there are some security concerns here.

3.7 Summary of topics 33

3.7 Summary of topics

In this module, we introduced the following topic:

• GUI application architectures

Questions for Module 3

1. Characterize each of the programs you have written since you started studying at NUS.

2. Find an example of a site which is using PHP/MySQL with a large database. Give the
URL, and a brief note on the site (size of database, type of user interface...).

Further study

• Pressman

34 GUI application architecture

Chapter 4
First steps in GUI programming

A s we will discover, there is no one standard for GUI programming, although the tech-
niques that you learn in one standard are generally transportable to another. In elementary
programming styles, there is a single thread-of-control, which we can examine by reading

the main(). This code determines how a user is expected to interact with the program. This
general program architecture is satisfactory for small programs with simple command-line user
interfaces.

However, graphical user interfaces have a much more complex thread-of-control. For example,
at any time we may have a number of possible events about to occur - the user may ask for the
window to be minimized, or resized, or click a button, or select a menu, or ...

Our programs must respond to each of these events. The normal way to do this is by restructuring
our programs as a group of functions - each of which responds to an event. These functions are
calledcallbacks.

Our GUI mainline code looks like this:

 #include <any GUI header files needed>

 int
 main ()
 {
 RegisterAllCallbacks ();
 LoopForever ();
 }

CODE LISTING GUICode.c

An interesting area of GUI programming is the development of abstract windowed environments,
where we program using an abstract API. These systems often allow the development of software
which can be compiled for any environment.

35

36 First steps in GUI programming

4.1 How not to do GUI programming

Don’t do it the hard way!

4.1.1 Direct calls to the X API

It is possible to write applications that use the X APIs directly. These programs tend to be long
(that is - they have a lot of source lines). Here is a simple application:

The source is as follows:

 #include <stdio.h>
 #include <X11/Intrinsic.h>
 #include <X11/StringDefs.h>
 #include <X11/Xaw/Command.h>
 #include <X11/Xaw/Paned.h>
 #include <X11/Xaw/Label.h>

 void
 quit_callback (widget, client_data, call_data)
 Widget widget;
 caddr_t client_data;
 caddr_t call_data;
 {
 exit (0);
 }

 main (argc, argv)
 int argc;
 char *argv[];
 { /* main */
 Widget parent;
 Arg args[20];
 int n;
 Widget pane_widget, quit_widget;
 Widget label_widget;

 /* Set up top−level shell widget */
 parent = XtInitialize (argv[0], "Xaw1", NULL, 0, &argc, argv);
 /* Set up pane to control whole application */
 n = 0;
 pane_widget = XtCreateManagedWidget ("pane",
 panedWidgetClass, parent, args, n);
 /* Set up command widget to act as a push button */
 n = 0;
 quit_widget = XtCreateManagedWidget ("quit",
 commandWidgetClass,
 pane_widget, args, n);
 /* Set up a callback function */
 XtAddCallback (quit_widget, XtNcallback, quit_callback, (caddr_t) NULL);
 /* Set up label widget */
 n = 0;
 XtSetArg (args[n], XtNlabel, "This is a label.");
 n++;
 label_widget = XtCreateManagedWidget ("label",
 labelWidgetClass,
 pane_widget, args, n);
 /* Map widgets and handle events */
 XtRealizeWidget (parent);
 XtMainLoop ();
 }

CODE LISTING xaw1.c

4.1 How not to do GUI programming 37

On a UNIX system we can compile this in the following way:

gcc -o xaw1 xaw1.c -lXt -lXaw

This programming technique is only included to demonstrate the underlying graphics primitives.

4.1.2 Direct calls to the Win32 API

It is also possible to write applications that use the Win32 API directly. These programs also
tend to be long. We start with this program:

 #include <windows.h>

 int STDCALL
 WinMain (HINSTANCE hInst, HINSTANCE hPrev, LPSTR lpCmd, int nShow)
 {
 MessageBox (NULL, "Hello, Windows!", "Hello", MB_OK);
 return 0;
 }

CODE LISTING SimpleWin32.c

This small example may be compiled using CYGWIN as follows:

gcc -oSimpleWin32 SimpleWin32.c -mwindows

And it produces the following application:

38 First steps in GUI programming

Another more complex example shows the flavour of raw Win32 programming, although I have
removed about 380 lines for clarity:

 #include <windows.h>
 #include <string.h>

 int STDCALL
 WinMain (HINSTANCE hInst, HINSTANCE hPrev, LPSTR lpCmd, int nShow)
 {
 HWND hwndMain; /* Handle for the main window. */
 MSG msg; /* A Win32 message structure. */
 WNDCLASSEX wndclass; /* A window class structure. */
 char *szMainWndClass = "WinTestWin";
 memset (&wndclass, 0, sizeof (WNDCLASSEX));
 wndclass.lpszClassName = szMainWndClass;
 wndclass.cbSize = sizeof (WNDCLASSEX);
 wndclass.style = CS_HREDRAW | CS_VREDRAW;
 wndclass.lpfnWndProc = MainWndProc;
 wndclass.hInstance = hInst;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION);
 wndclass.hIconSm = LoadIcon (NULL, IDI_APPLICATION);
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW);
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);
 RegisterClassEx (&wndclass);
 hwndMain = CreateWindow (szMainWndClass, "Hello", WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, NULL, NULL, hInst, NULL);
 ShowWindow (hwndMain, nShow);
 UpdateWindow (hwndMain);
 while (GetMessage (&msg, NULL, 0, 0)) {
 TranslateMessage (&msg);
 DispatchMessage (&msg);
 }
 return msg.wParam;
 }

CODE LISTING BiggerWin.c

The full source code and a makefile is available athttp://www.comp.nus.edu.sg/˜cs3283/ftp/generic.tgz.

When this is compiled, we get this:

Unfortunately, the full source code totals over 400 lines of C, and still doesn’t actually do any-
thing! If you are interested in learning more about Win32 programming, there is an interesting
tutorial athttp://www.winprog.org/tutorial.

http://www.comp.nus.edu.sg/~cs3283/ftp/generic.tgz
http://www.winprog.org/tutorial

4.2 OO GUI toolkits 39

Quit

Frame Button

Figure 4.1:Nested GUI components

4.2 OO GUI toolkits

If we can reduce the size of code, we can be more assured that our code is correct. We are already
using one mechanism to do this - we call Win32 or C functions which do quite complex things
such as the call toCreateWindow() in the Win32 code above. A view of this might be that we
arehiding the difficult parts from our application.

However, this sort of functional hiding has some flaws - our programs must maintain various
sets of data representing our GUI environment, and can easily cause errors. Object-oriented
technology provides a better mechanism, hiding the data from our programs - so that the only
way in which the programs can modify the data is by using “approved” routines.

Unfortunately, there is no one object-oriented standard for GUI applications, leading to a frag-
mented situation - there are literally hundreds of commercial and free OO GUI framework/toolkits,
with no one clear leader in the market place.

4.2.1 Event handling

When using OO GUI toolkits, the visible GUI part of the application often contains nested com-
ponents as in Figure4.1.

Each component may be the current focus of an event, and may have an event handler. If the inner
component does not handle the event, then the event is passed up to the containing component.

This general structure maps easily onto OO software architectures, when the innermost com-
ponents are specializations (i.e. inherit from) the outer components. If you overide the event
handling method in the inner component, then it will handle the event. If not, the parent compo-
nent method handles the event.

40 First steps in GUI programming

4.2.2 GTK+ and glade

GTK+ is a multi-platform toolkit for creating graphical user interfaces, originally designed for
the X Window System. However, by compiling using the CygWin GNU compiler, it is possible to
use GTK+ on Win32. GTK+ is free software and part of the GNU Project. GTK+ has an object-
oriented architecture for maximum flexibility, consisting of the following component libraries:

• GDK - A wrapper for low-level windowing functions.

• GTK - An advanced widget set.

One of the parts of the GTK+ distribution is a GUI builder calledglade, which can build user
interfaces very quickly.

Here is an example of an application built usingglade:

4.3 Web interfaces 41

4.2.3 MFC

The Microsoft FoundationClasses are an OO toolkit used to access Win32 system calls, and
especially to construct GUI applications. A DLL contains the code for MFC, and is normally
linked at runtime.

The base class is CObject, and all MFC classes inherit from this class.

One characteristic of MFC programs is the use of Hungarian (prefix) notation for variable names.
It is common to see MFC program variables prefixed with type identifiers. For example:

• dLocalMax is a double variable

• iLocalMin is an integer variable.

4.2.4 Java/Swing

Originally the graphical toolkit for Java was AWT, theAbstractWindowingToolkit. It is fairly
primitive, and the new Swing toolkit provides much more functionality. AWT is native code,
with a Java API, but Swing is implemented on-top-of AWT.

Swing components inherit fromjava.awt.component , and the Swing classes that are similar to
AWT classes are prefixed with the letter “J”. For example, the AWTButton class is renamed
JButton . You can mix-and-match AWT and Swing components.

Java/Swing may be used in two distinct ways:

1. Producing a standalone application.

2. Producing an applet to run within a web browser.

One of the features of Swing is that it implements a pluggable look-and-feel. The look-and-feel
can even be changed dynamically.

4.3 Web interfaces

It is possible to develop sophisticated applications with a web-based interface. We might divide
the methods into the following categories:

• Server-side dynamic pages- using (for example) the CGI (Common Gateway Interface)
to execute small programs or scripts on the server. This method is very common, and
programs are typically written in perl.

42 First steps in GUI programming

• Server-side scripting- using (for example) PHP3 pages, and a specialized server which
can interpret the PHP.

• Client-side scripting - using (for example) Javascript, and an interpreter on the client
machine.

• Client-side applets- using (for example) a Java applet, precompiled and executed on a
JVM interpreter on the client machine.

We will look at some of these methods later in the course.

4.4 Scripting languages

Scripting languages which can produce GUI interfaces are relatively easy to use. An effective
strategy for building GUI applications is to write the GUI part in a scripting language, and to
write the core ’difficult’ part in C.

4.5 Summary of topics 43

4.5 Summary of topics

In this module, we introduced the following topics:

• Programming styles to avoid

• Event driven architectures

• OO toolkits

• Web-based systems

• Scripting languages

Questions for Module 4

1. In the code listing on page 36 are a series of library calls to thelibXaw library. In which
call does the program spend the most time?

2. In this same code listing, draw the relationship betweenparent , pane_widget , quit_widget
andlabel_widget .

3. In Figure 3.1, if a mouse was clicked over theButton , in what order would the event be
processed by theFrame andButton event handlers?

4. What is a (Microsoft) DLL?

5. Find the code for a minimal Swing “HelloWorld” application (and check that it works).

Further study

• http://www.public.asu.edu/~tobiazz/papers/thesis/local/gui_toolkit_list.html

44 First steps in GUI programming

Chapter 5
Scripting language - Tcl/Tk

Scripting is difficult to define. It has existed for a long time - the first scripting languages were
job control languages such as the shell program found in Unix systems. Modern scripting
languages such as Perl, Tcl, Python, awk, Ruby and so on are general purpose, but often they

have more powerful basic operations than those found in conventional general purpose computer
languages. For example it is common to have operators that perform regular-expression pattern
matching in a scripting language.

Scripting languages are normally interpreted, and the interpreter contains the routines to do the
pattern matching. One line of script code may be equivalent to 100 lines of C. However, the
overhead in having a (say) 3MB script interpreter is sometimes a problem, although less so these
days.

Perl is widely used, as it is found in active web page developments. Tcl/Tk is useful for GUI
development, allowing us to prototype new GUI applications quickly.

5.1 How not to use scripting languages

Don’t use to the exclusion of other languages!

Scripting languages are very good at some things, but sometimes frustratingly bad at other things.
For example, many scripting languages use associative, text-based array indexes, and so a simple
array lookup may take 1000 times longer than an equivalent lookup in a compiled language.

For this reason, it is common to mix scripting and other languages.

45

46 Scripting language - Tcl/Tk

5.2 Tcl/Tk

Wish - the windowing shell, is a simple scripting interface to the Tcl/Tk language. The language
Tcl (Tool Command Language) is an interpreted scripting language, with useful inter-application
communication methods, and is pronounced ’tickle’. Tk originally was an X-window toolkit
implemented as extensions to ’tcl’. However, now it is availablenativeon all platforms.

The programxspin is an example of a portable program in which the entire user interface is
written in wish. The program also runs on PCs using NT or Win95, and as well on Macintoshes.

A first use of wish could be the following:

manu> wish
wish> button .quit -text "Hello World!" -command {exit}
.quit
wish> pack .quit
wish>

You can encapsulate this in a script:

 #!/usr/local/bin/wish8.1 −f

 button .quit −text " Hello World!" −command { exit}
 pack .quit

CODE LISTING HelloWorld.tcl

5.2 Tcl/Tk 47

If you create this as a file, and make it executable, you should be able to run this simple graphical
program.

5.2.1 The structure of Tcl/Tk

The Tcl language has a tiny syntax - there is only a singlecommandstructure, and a set of rules
to determine how to interpret the commands. Other languages have special syntaxes for control
structures (if, while, repeat...) - not so in Tcl. All such structures are implemented ascommands.

There is a runtime library of compiled ’C’ routines, and the ’level’ of the GUI interface is quite
high.

Comments: If the first character of a command is#, it is a comment.

Tcl commands: Tcl commands are just words separated by spaces. Commands return strings,
and arguments are just further words.

command argument argument
command argument

Spaces are important:

expr 5*3 has a single argument
expr 5 * 3 has three arguments

Tcl commands are separated by a new line, or a semicolon, and arrays are indexed by text:

set a(a\ text\ index) 4

Tcl/Tk quoting rules :

The "quoting" rules come in to play when the " or { character are first in the word. ".." disables a
few of the special characters - for example space, tab, newline and semicolon, and {..} disables
everything except \{, \} and \nl. This facility is particularly useful for the control structures - they
end up looking very like ’C’:

while {a==10} {
set b [tst a]

}

48 Scripting language - Tcl/Tk

Tcl/Tk substitution rules:

Variable substitution: The dollar sign performs the variable value substitution. Tcl variables
are strings.

set a 12b a will be "12b"
set b 12$a b will be "1212b"

Command substitution: The []’s are replaced by the value returned by executing the Tcl com-
mand ’doit’.

set a [doit param1 param2]

Backslash substitution:

set a a\ string\ with\ spaces\ \
and\ a\ new\ line

Tcl/Tk command examples:

Procedures File Access Miscellaneous
proc name {parameters} {body} open <name> source <NameOfFile>

read <fileID> global <varname>

close <fileID> catch <command>

cd <directoryname> format <formatstring> <value>

exec <process>

return <value>

List operators:

split <string> ?splitcharacters?
concat <list> <list>
lindex <list> <index>
... + lots more

Control structures:

if {test} {thenpart} {elsepart} 1while {test} {body}
for {init} {test} {incr} {body}
continue
case $x in a {a-part} b {b-part}

1The Tcl/Tk wordsthenandelseare noise words, which may be used to increase readability.

5.2 Tcl/Tk 49

Widget creation commands:

The first parameter to each is a ’dotted’ name. The dot heirarchy indicates the relationships
between the widgets.

% label <name> - optional parameter pairs ...
% canvas <name> - optional parameter pairs ...
% button <name> - optional parameter pairs ...
% frame <name> - optional parameter pairs ...
% ... and so on

When you create a widget ".b", a new command ".b" is created, which you can use to further
communicate with it. The geometry managers in Tk assemble the widgets:

% pack <name> where

5.2.2 Tcl/Tk example software

Here is a very small Tcl/Tk application, which displays the date in a scrollable window:

The code for this is:

 #!/usr/local/bin/wish8.1 −f

 text .log −width 60 −height 5 −bd 2 −relief raised
 pack .log
 button .buttonquit −text " Quit" −command exit
 pack .buttonquit
 button .buttondate −text " date" −command getdate
 pack .buttondate
 proc getdate {} {
 set result [exec date]
 .log insert end $result
 .log insert end \n
 }

CODE LISTING SimpleProg.tcl

50 Scripting language - Tcl/Tk

Here is tkpaint - a drawing/painting program written in Tcl/Tk:

The mainline of the source just creates the buttons, and packs the frame:

 #! /usr/local/bin/wish −f

 set thistool rectangle
 set thisop grow
 set thiscolour black
 button .exitbtn −bitmap @exit.xbm −command exit
 button .squarebtn −bitmap @square.xbm −command setsquaretool
 button .circlebtn −bitmap @circle.xbm −command setcircletool
 button .shrnkbtn −bitmap @shrink.xbm −command " set thisop shrnk"
 button .growbtn −bitmap @grow.xbm −command " set thisop grow"
 button .printbtn −bitmap @print.xbm −command printit
 button .colorbtn −bitmap @newcolour.xbm −command setanewcolour
 canvas .net −width 400 −height 400 −background white −relief sunken
 canvas .status −width 40 −height 40 −background white −relief sunken

 pack .net −side bottom
 pack .status −side right
 pack .squarebtn .circlebtn −side left −ipadx 1m −ipady 1m −expand 1
 pack .exitbtn .printbtn −side right −ipadx 1m −ipady 1m −expand 1
 pack .colorbtn .shrnkbtn .growbtn −side right −ipadx 1m −ipady 1m −expand 1

 bind .net <ButtonPress−1> {makenode %x %y}
 .status create rectangle 10 10 37 37 −tag statusthingy −fill $thiscolour
 set nodes 0; set oldx 0; set oldy 0;

CODE LISTING tkpaint1.tcl

Routines for dragging, scaling and printing:

 proc beginmove {x y} {
global oldx oldy
set oldx $x; set oldy $y

 }

 proc domove {item x y} {
global oldx oldy
.net move $item [expr " $x − $oldx"] [expr " $y − $oldy"]
set oldx $x; set oldy $y

 }

 proc altersize {item x y z} {
.net scale $item $x $y $z $z

 }

 proc printit {} {
.net postscript −file " pic.ps"

 }

CODE LISTING tkpaint4.tcl

5.2 Tcl/Tk 51

Node operations for tkpaint:

 proc makenode {x y} {
 global nodes oldx oldy thistool thiscolor
 set nodes [expr " $nodes+1"]

 set x1 [expr " $x−20"]; set y1 [expr " $y−20"]
 set x2 [expr " $x+20"]; set y2 [expr " $y+20"]
 if {[string compare $thistool " oval"] == 0} {

 .net create oval $x1 $y1 $x2 $y2 −tag node$nodes −fill $thiscolor
 }
 if {[string compare $thistool " rectangle"] == 0} {

 .net create rectangle $x1 $y1 $x2 $y2 −tag node$nodes −fill $thiscolor
 }
 .net bind node$nodes <Enter> " .net itemconfigure node$nodes −width 5"
 .net bind node$nodes <Leave> " .net itemconfigure node$nodes −width 1"
 .net bind node$nodes <ButtonPress−3> " beginmove %x %y"
 .net bind node$nodes <B3−Motion> " domove node$nodes %x %y"
 .net bind node$nodes <ButtonPress−2> " dothisop node$nodes %x %y"
 }

 proc dothisop {item x y} {
 global thisop
 if {[string compare $thisop " shrink"] == 0} {

 altersize $item $x $y 0.5
 }
 if {[string compare $thisop " grow"] == 0} {

 altersize $item $x $y 2.0
 }
 }

CODE LISTING tkpaint2.tcl

More routines:

 proc setcircletool {} {
global thistool thiscolor
set thistool oval
.status delete statusthingy
.status create oval 10 10 37 37 −tag statusthingy −fill $thiscolor

 }

 proc setsquaretool {} {
global thistool thiscolor
set thistool rectangle
.status delete statusthingy
.status create rectangle 10 10 37 37 −tag statusthingy −fill $thiscolor

 }

 proc setanewcolor {} {
global thiscolor

if {[string compare $thiscolor " black"] == 0} {
set thiscolor green

} { if {[string compare $thiscolor " green"] == 0} {
 set thiscolor blue

 } { if {[string compare $thiscolor " blue"] == 0} {
 set thiscolor red

 } { if {[string compare $thiscolor " red"] == 0} {
 set thiscolor orange

 } { set thiscolor black }
 }

 }
 }
.status itemconfigure statusthingy −fill $thiscolor

 }

CODE LISTING tkpaint3.tcl

52 Scripting language - Tcl/Tk

5.2.3 C/Tk

In the following example, a Tcl/Tk program is integrated with a C program, giving a very small
codesize GUI application, that can be compiled on any platform - Windows, UNIX or even the
Macintosh platform without changes.

 #include <stdio.h>
 #include <tcl.h>
 #include <tk.h>

 char tclprog[] = " \
 proc fileDialog {w} {\
 set types {\
 { \"Image files\" {.gif} }\
 { \"All files\" *}\
 };\
 set file [tk_getOpenFile −filetypes $types −parent $w];\
 image create photo picture −file $file;\
 set glb_tx [image width picture];\
 set glb_ty [image height picture];\
 .c configure −width $glb_tx −height $glb_ty;\
 .c create image 1 1 −anchor nw −image picture −tags \"myimage\";\
 };\
 frame .mbar −relief raised −bd 2;\
 frame .dummy −width 10c −height 0;\
 pack .mbar .dummy −side top −fill x;\
 menubutton .mbar.file −text File −underline 0 −menu .mbar.file.menu;\
 menu .mbar.file.menu −tearoff 1;\
 .mbar.file.menu add command −label \"Open...\" −command \"fileDialog .\";\
 .mbar.file.menu add separator;\
 .mbar.file.menu add command −label \"Quit\" −command \"destroy .\";\
 pack .mbar.file −side left;\
 canvas .c −bd 2 −relief raised;\
 pack .c −side top −expand yes −fill x;\
 bind . <Control−c> {destroy .};\
 bind . <Control−q> {destroy .};\
 focus .mbar";

 int
 main (argc, argv)
 int argc;
 char **argv;
 {
 Tk_Window mainWindow;
 Tcl_Interp *tcl_interp;

 setenv (" TCL_LIBRARY", " /cygnus/cygwin−b20/share/tcl8.0");
 tcl_interp = Tcl_CreateInterp ();
 if (Tcl_Init (tcl_interp) != TCL_OK || Tk_Init (tcl_interp) != TCL_OK) {
 if (*tcl_interp−>result)
 (void) fprintf (stderr, " %s: %s\n", argv[0], tcl_interp−>result);
 exit (1);
 }
 mainWindow = Tk_MainWindow (tcl_interp);
 if (mainWindow == NULL) {
 fprintf (stderr, " %s\n", tcl_interp−>result);
 exit (1);
 }

 Tcl_Eval (tcl_interp, tclprog);
 Tk_MainLoop ();

 exit (1);
 }

CODE LISTING CplusTclTk.c

The first half of the listing is a C string containing a Tcl/Tk program. The second part of the
listing is C code which uses this Tcl/Tk.

5.2 Tcl/Tk 53

On a Win32 system, we compile this as:

gcc -o CplusTclTk CplusTclTk.c -mwindows -ltcl80 -ltk80

On a UNIX system we use:

gcc -o CplusTclTk CplusTclTk.c -ltk -ltcl -lX11 -lm -ldl

And the result is a simple viewer for GIF images. The total code size is 57 lines. The application
looks like this when running:

54 Scripting language - Tcl/Tk

5.3 Summary of topics

In this module, we introduced the following topics:

• Practical programming in Tcl/Tk

• Other Tk language bindings

• Some sample programs

Questions for Module 4

1. Given the frame.frm containing a canvas and a quit button, give sensible names for the
canvas and the button.

2. Modify SimpleProg.tcl to have an extra buttonclear above thequit button which clears
the date display.

3. Modify SimpleProg.tcl to have an extra buttonclear to the left of thequit button which
clears the date display.

4. What is the effect of the following tcl command?set a [exec ls]

5. What is the effect of the following tcl command?set a expr 3 + 4

6. Write a minimal Tk application which puts up a singleFile menu with aQuit item in it.

Further study

• http://www.pconline.com/~erc/tclwin.htm

• http://tcl.activestate.com/scripting/

• http://www.msen.com/~clif/TclTutor.html

Chapter 6
Introduction to Java/Swing

Java is commonly used for deploying applications across a network. Compiled Java code
may be distributed to different machine architectures, and a native-code interpreter on each
architecture interprets the Java code. The core functions found in the Java interpreter are called

the JFC (Java Foundation Classes). JFC provides generally useful classes, including classes for
GUIs, accessability and 2D drawing. The original GUI classes in Java are known as AWT - the
Abstract Windowing Toolkit. AWT provides basic GUI functions such as buttons, frames and
dialogs, and is implemented in native code in the Java interpreter.

By contrast, Swing is not implemented in native code - instead it is implemented in AWT. Swing
and AWT can (and normally do) coexist - we may use the buttons from Swing, alongside AWT
event handlers.

The advantages of Swing are:

1. Consistent look-and-feel - The look and feel is consistent across platforms.

2. Pluggable look-and-feel - The look and feel can be switched on-the-fly.

3. High-level widgets - the Swing components are useful and flexible.

In general, the Swing components are easier to use than similar AWT components.

6.1 How not to use Swing

The same concerns that applied to Tcl/Tk deployment apply to the use of Swing. If the target
computers are slow, then the interpreter overhead may make the application frustratingly slow.
With the rate of increase in speed in processors, this concern is minimized.

Processor intensive applications written in Java often seem to make the GUI appear slow and
unresponsive. This is probably due to internal thread scheduling techniques in the interpreter.

55

56 Introduction to Java/Swing

6.2 Getting started

There are quite a few development environments for building Java applications and applets, and
two of them are suggested for use in this course. However - if you have something better, or that
you feel more comfortable with, please just use that. The systems are:

• j2sdk1.3.1- the Java development kit from Sun. It includes Java compilers, interpreters,
debuggers and demo software, and local copies of it for WinXX and LINUX are found
here:

– http://www.comp.nus.edu.sg/˜cs3283/ftp/Java/j2sdk-1_3_1_02-win.exe

– http://www.comp.nus.edu.sg/˜cs3283/ftp/Java/j2sdk-1_3_1_02-linux-i386.bin

• Netbeans- A GUI builder for Java applications and applets, again for WinXX and LINUX:

– http://www.comp.nus.edu.sg/˜cs3283/ftp/Java/NetBeansIDE-release331.exe

– http://www.comp.nus.edu.sg/˜cs3283/ftp/Java/NetBeansIDE-release331.tar.gz

Each of these systems is documented and described at public web sites - look at Sun’s Java web
site, andhttp://www.netbeans.org. In addition - there are local copies of some of the documenta-
tion here:

• TheJFC API at http://www.comp.nus.edu.sg/˜cs3283/ftp/Java/jfcapi/

• The NetbeansAPI at http://www.comp.nus.edu.sg/˜cs3283/ftp/Java/OpenAPIs/

• TheJava tutorial at http://www.comp.nus.edu.sg/˜cs3283/ftp/Java/JavaTutorial/

• Swing Connectat http://www.comp.nus.edu.sg/˜cs3283/ftp/Java/swingConnect/

Once you have installed the j2sdk, find the file called SwingSet2.jar, inside the demo heirarchy
somewhere, and change to the directory. Then try:

java -jar SwingSet2.jar

6.3 Swing programming

In this course I hope to clarify the general style of Swing applications, and show sufficient exam-
ples to buildmenu’dGUI applications with interesting graphical interactions. The same strategy
was used in the introduction to Tcl/Tk. A good book that covers this material in detail is

The JFC Swing Tutorial, by Kathy Walrath and Mary Campione.

http://www.comp.nus.edu.sg/~cs3283/ftp/Java/j2sdk-1_3_1_02-win.exe
http://www.comp.nus.edu.sg/~cs3283/ftp/Java/j2sdk-1_3_1_02-linux-i386.bin
http://www.comp.nus.edu.sg/~cs3283/ftp/Java/NetBeansIDE-release331.exe
http://www.comp.nus.edu.sg/~cs3283/ftp/Java/NetBeansIDE-release331.tar.gz
http://www.netbeans.org
http://www.comp.nus.edu.sg/~cs3283/ftp/Java/jfcapi/
http://www.comp.nus.edu.sg/~cs3283/ftp/Java/OpenAPIs/
http://www.comp.nus.edu.sg/~cs3283/ftp/Java/JavaTutorial/
http://www.comp.nus.edu.sg/~cs3283/ftp/Java/swingConnect/

6.3 Swing programming 57

The toplevel components provided by Swing are:

1. JApplet - for applets within web pages

2. JDialog - for dialog boxes

3. JFrame - for building applications

All other Swing components derive from theJComponent class.JComponent provides

• Tool tips - little windows with explanations

• Pluggable look and feel- as described

• Layour management- items within the component

• Keyboard action management- Hot keys and so on.

• And other facilities

Swing implements an MVC architecture.

6.3.1 Pluggable look and feel

It is relatively easy to change the look and feel of an application - here are three:

If you wished to use the WinXX look-and-feel, in the main of your application, you can make
the following call:

UIManager.setLookAndFeel("com.sun.java.swing.plaf.windows.WindowsLookAndFeel");

58 Introduction to Java/Swing

6.4 Example application

It is traditional to begin with a “Hello World” example, but I will start with “Hello Singapore”,
and you will have to move up to “Hello World” as you progress.

public class t2 extends javax.swing.JFrame {
 public t2() {
 initComponents();
 }
 private void initComponents() {
 jLabel2 = new javax.swing.JLabel();
 addWindowListener(new java.awt.event.WindowAdapter() {
 public void windowClosing(java.awt.event.WindowEvent evt) {
 exitForm(evt);
 }
 });
 jLabel2.setText("Hello Singapore!");
 jLabel2.setHorizontalAlignment(javax.swing.SwingConstants.CENTER);
 getContentPane().add(jLabel2, java.awt.BorderLayout.CENTER);
 pack();
 }
 private void exitForm(java.awt.event.WindowEvent evt) {
 System.exit(0);
 }
 public static void main(String args[]) {
 new t2().show();
 }
 private javax.swing.JLabel jLabel2;
}

CODE LISTING t2.java

This code should not require much explanation - it just instantiates aJLabel , and sets the text
field. Perhaps the only explanation needed is why it is so large! The code is generated from a
GUI builder, and follows a particular software architecture. In this presentation of Swing, I will
use the same, despite the possibility of smaller code-size applications.

When we compile and run this application we get:

The call togetContentPane returns thecontentPane object for the frame - this is a generic
AWT container for components associated with eachJFrame . TheaddWindowListener call is
from java.awt.Window , and adds the specified window listener to receive window events from
this window.

6.5 Example applet 59

6.5 Example applet

An equivalent Hello-world applet:

public class HelloWorldApp extends javax.swing.JApplet {
 public HelloWorldApp() {
 initComponents();
 }
 private void initComponents() {
 jLabel1 = new javax.swing.JLabel();
 jLabel1.setText("Hello Singapore!");
 jLabel1.setHorizontalAlignment(javax.swing.SwingConstants.CENTER);
 getContentPane().add(jLabel1, java.awt.BorderLayout.CENTER);
 }
 private javax.swing.JLabel jLabel1;
}

CODE LISTING HelloWorldApp.java

This code follows the same structure - it just instantiates aJLabel , and sets the text field, although
in this code, the class extends aJApplet instead of aJFrame . When we compile and run this
application we get aHelloWorldApp.class file, which has to be referenced in a web page:

<BASE HREF="http://www.comp.nus.edu.sg/~hugh/swing/">
<!DOCTYPE HTML PUBLIC "−//W3C//DTD HTML 3.2//EN">
<html>
The HelloWorld Applet <p>
<EMBED type = "application/x−java−applet;version=1.1.2"
 java_CODE = "HelloWorldApp.class"
 java_ARCHIVE = "applets.jar"
 WIDTH = 400
 HEIGHT = 50 ></EMBED>
</HTML>

CODE LISTING HelloWorldApp.txt

The end result is:

60 Introduction to Java/Swing

6.6 Using the netbeans IDE

Simple programs like the ones just presented may be created using the GUI builder found innet-
beans (http://www.netbeans.org), using a very small number of button presses and keystrokes.
Here is a screen shot:

http://www.netbeans.org

6.7 Summary of topics 61

6.7 Summary of topics

In this module, we introduced the following topics:

• Tool sets for Java/Swing

• The relationship between JFC, Java and Swing.

• Simple first programs

Questions for module 5

1. What is meant by “the MVC architecture” mentioned in section 5.3?

2. Investigate how you would create a “ToolTip” in Tcl/Tk - give a small code segment which
demonstrates theToolTip.

3. Investigate how you would create a “ToolTip” in Java/Swing - give a small code segment
which demonstrates theToolTip.

4. Write a minimal Java/Swing application which puts up a singleFile menu with aQuit item
in it.

5. The javax.swing.UIManager class is used to manipulate the look-and-feel of an applica-
tion - as seen in section 5.3.1. How can you discover which look-and-feel strategies are
implemented in the Java development environment?

Further study

• TheJFC API at http://www.comp.nus.edu.sg/˜cs3283/ftp/Java/jfcapi/

• The NetbeansAPI at http://www.comp.nus.edu.sg/˜cs3283/ftp/Java/OpenAPIs/

• TheJava tutorial at http://www.comp.nus.edu.sg/˜cs3283/ftp/Java/JavaTutorial/

• Swing Connectat http://www.comp.nus.edu.sg/˜cs3283/ftp/Java/swingConnect/

http://www.comp.nus.edu.sg/~cs3283/ftp/Java/jfcapi/
http://www.comp.nus.edu.sg/~cs3283/ftp/Java/OpenAPIs/
http://www.comp.nus.edu.sg/~cs3283/ftp/Java/JavaTutorial/
http://www.comp.nus.edu.sg/~cs3283/ftp/Java/swingConnect/

62 Introduction to Java/Swing

Chapter 7
Java continued ...

W e continue with our study of Java/Swing by looking at various semi-related topics, but
be reminded that the notes given here are very brief, and should be supplemented by
studying the examples and explanations found in the Java Tutorial on the web site.

Visible and invisible Java/Swing elements are found in a containment heirarchy. At the top level
we have containers for the different types of application (i.e. an applet, or an application, or a
dialog). In a middle level we have the panes, and at a lower level the individual components.

Level Container
Top-level JFrame

JApplet
JDialog

Mid-level JPanel
JScrollBar

JTabbedPane

Component-level JButton
JLabel

...

Every GUI component must be part of a containment hierarchy1. Each top-level container has
a content pane, and an optional menu bar, and Java/Swing components are added to either the
content pane or the menu bar. Every component must be placed somewhere in this containment
heirarchy, or it will not be visible.

1To view the containment hierarchy for any frame or dialog, click its border to select it, and then press Control-
Shift-F1. A list of the containment hierarchy will be written to the standard output stream.

63

64 Java continued ...

7.1 Layout management

Every container has a default layout manager, which may be over-ridden with your own if for
some reason the existing one is unsatisfactory. The Java platform supplies a range of layout
managers, but here we will just look briefly at three. Note that these are AWT components, not
Swing .

7.1.1 BorderLayout

BorderLayout is the default layout manager for every content pane, and assists in placing com-
ponents in the north, south, east, west, and center of the content pane.

contentPane.add(new JButton("B1"), BorderLayout.NORTH);

7.1.2 BoxLayout

BoxLayout puts components in a single row or column. Here is code to create a centered column
of components:

pane.setLayout(new BoxLayout(pane, BoxLayout.Y_AXIS));
pane.add(label);
pane.add(Box.createRigidArea(new Dimension(0,5)));
pane.add(...);

7.1.3 CardLayout

CardLayout is for when a pane has different components at different times. You may think of it
as a stack of same-sized cards.

cards = new JPanel();
cards.setLayout(new CardLayout());
cards.add(p1, BUTTONPANEL);
cards.add(p2, TEXTPANEL);

You can choose the top card to show:

CardLayout cl = (CardLayout)(cards.getLayout());
cl.show(cards, (String)evt.getItem());

7.2 Creating menus 65

7.2 Creating menus

The menu classes are descendants ofJComponent , and may be used in any higher-level con-
tainer class (JApplet and so on). Here is a small example of a simple menu application, given in
thenetbeansprogram style:

public class menutest extends javax.swing.JFrame {
 public menutest() {
 initComponents();
 }
 private void initComponents() {
 jMenuBar1 = new javax.swing.JMenuBar();
 jMenu1 = new javax.swing.JMenu();
 jMenuItem1 = new javax.swing.JMenuItem();
 jMenuItem2 = new javax.swing.JMenuItem();
 jMenuItem3 = new javax.swing.JMenuItem();
 jMenu2 = new javax.swing.JMenu();
 jMenuItem4 = new javax.swing.JMenuItem();
 jMenu1.setText("File");
 jMenuItem1.setText("Open");
 jMenu1.add(jMenuItem1);
 jMenuItem2.setText("Close");
 jMenu1.add(jMenuItem2);
 jMenuItem3.setText("Quit");
 jMenuItem3.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 jMenuItem3ActionPerformed(evt);
 }
 });
 jMenu1.add(jMenuItem3);
 jMenuBar1.add(jMenu1);
 jMenu2.setText("Edit");
 jMenuItem4.setText("Cut");
 jMenu2.add(jMenuItem4);
 jMenuBar1.add(jMenu2);
 addWindowListener(new java.awt.event.WindowAdapter() {
 public void windowClosing(java.awt.event.WindowEvent evt) {
 exitForm(evt);
 }
 });
 setJMenuBar(jMenuBar1);
 pack();
 }

 private void jMenuItem3ActionPerformed(java.awt.event.ActionEvent evt) {
 System.exit(0);
 }
 private void exitForm(java.awt.event.WindowEvent evt) {
 System.exit(0);
 }
 public static void main(String args[]) {
 new menutest().show();
 }
 private javax.swing.JMenuBar jMenuBar1;
 private javax.swing.JMenu jMenu1;
 private javax.swing.JMenuItem jMenuItem1;
 private javax.swing.JMenuItem jMenuItem2;
 private javax.swing.JMenuItem jMenuItem3;
 private javax.swing.JMenu jMenu2;
 private javax.swing.JMenuItem jMenuItem4;
}

CODE LISTING menutest.java

The end result is:

66 Java continued ...

7.3 Threads in Swing

Java supports a multi-threading mechanism that is sometimes useful. User programs and applets
may create several threads to manage different parts of the application. As in any multi-threaded
system, we may have critical sections if two threads attempt to access the same variables at the
same time. To create threads there are some helpful classes such asSwingWorker or Timer .

Most Swing components are not thread safe - this means that if two threads call methods on the
same Swing component, the results are not guaranteed. The single-thread rule:

Swing components can be accessed by only one thread at a time.

A particular thread, the event-dispatching thread, is the one that normally accesses Swing com-
ponents. To get access to this thread from another thread we can useinvokeLater() or invoke-
AndWait() .

7.3.1 Creating threads

Many applications do not require threading, but if you do have threads, then you may have
problems debugging your programs. However, you might consider using threads if:

• Your application has to do some long task, or wait for an external event, without freezing
the display.

• Your application has to do someting at fixed time intervals.

The following two classes are used to implement threads:

1. SwingWorker 2: To create a thread

2. Timer : Creates a timed thread

To useSwingWorker , create a subclass of it, and in the subclass, implement your owncon-
struct() method. When you instantiate theSwingWorker subclass, the runtime environment
creates a thread but does not start it. The thread starts when you invokestart() on the object.

Here’s an example of usingSwingWorker from the tutorial - an image is to be loaded over a
network (given a URL). This may of course take quite a while, so we don’t block our main
thread - (if we did this, the GUI may freeze).

2If you find that your distribution does not include SwingWorker.class, download and compile it.

7.3 Threads in Swing 67

The following code shows the better way of loading the remote image:

private void loadImage(final String imagePath,
 final int index) {
 final SwingWorker worker = new SwingWorker() {
 ImageIcon icon = null;
 public Object construct() {
 icon = new ImageIcon(getURL(imagePath));
 return icon;
 }
 public void finished() {
 Photo pic = (Photo)pictures.elementAt(index);
 pic.setIcon(icon);
 if (index == current)
 updatePhotograph(index, pic);
 }
 };
 worker.start();
}

CODE LISTING ImageLoader.java

The Timer class is used to repeatedly perform an operation. When you create aTimer , you
specify its frequency, and you specify which object is the listener for its events. Once you start
the timer, the action listener’sactionPerformed() method will be called for each event.

7.3.2 Event dispatching thread

The event-dispatching thread is the main event-handling thread. It is normal for all GUI code to
be called from this main thread, even if some of the code may take a long time to run. However
- we have already mentioned that we should not delay the event-dispatching thread.

Swing provides a solution to this - theInvokeLater() method may be used to safely run code
in the event-dispatching thread. The method requests that some code be executed in the event-
dispatching thread, but returns immediately, without waiting for the code to execute.

Runnable doWorkRunnable = new Runnable() {
public void run() { doWork(); }

};
SwingUtilities.invokeLater(doWorkRunnable);

68 Java continued ...

7.4 Handling events

Actions associated with Java/Swing components raise events - moving the mouse or clicking a
JButton all cause events to be raised. The application program writes a listener method to process
an event, and registers it as an event listener on the event source. There are different kinds of
events, and we use different kinds of listener to act on them. For example:

Action Listener type

Button click ActionListener
A window closes WindowListener
Mouse click MouseListener
Mouse moves MouseMotionListener
Component becomes visible ComponentListener
Keyboard focus FocusListener
List selection changes ListSelectionListener

The listener methods are passed an event object which gives information about the event and
identifies the event source.

7.4.1 Event handlers

When you write an event handler, you must do the following:

• Specify a class that either implements a listener interface or extends a class that implements
a listener interface.

public class MyClass implements ActionListener { ...

• Register an instance of the class as a listener upon the components.

Component.addActionListener(instanceOfMyClass);

• Implements the methods in the listener interface.

public void actionPerformed(ActionEvent e) {
...//code that reacts to the action...

}

Make sure that your event handler code executes quickly, or your program may seem to be slow.
In the sample code given so far, we have used window listeners to react if someone closes a
window, but not to capture other sorts of events.

7.4 Handling events 69

7.4.2 Handling events

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class CheckBoxDemo extends JPanel {
 JCheckBox chinButton;
 JCheckBox glassesButton;
 StringBuffer choices;
 JLabel pic;
 public CheckBoxDemo() {
 chinButton = new JCheckBox(" Chin");
 glassesButton = new JCheckBox(" Glasses");
 CheckBoxListener myListener = new CheckBoxListener();
 chinButton.addItemListener(myListener);
 glassesButton.addItemListener(myListener);
 choices = new StringBuffer(" −−ht");
 pic = new JLabel(new ImageIcon(" geek−" + choices.toString() + " .gif"));
 pic.setToolTipText(choices.toString());
 JPanel checkPanel = new JPanel();
 checkPanel.setLayout(new GridLayout(0, 1));
 checkPanel.add(chinButton);
 checkPanel.add(glassesButton);
 setLayout(new BorderLayout());
 add(checkPanel, BorderLayout.WEST);
 add(pic, BorderLayout.CENTER);
 setBorder(BorderFactory.createEmptyBorder(20,20,20,20));
 }
 class CheckBoxListener implements ItemListener {
 public void itemStateChanged(ItemEvent e) {
 int index = 0;
 char c = ’−’;
 Object source = e.getItemSelectable();
 if (source == chinButton) {
 index = 0;
 c = ’c’;
 } else if (source == glassesButton) {
 index = 1;
 c = ’g’;
 }
 if (e.getStateChange() == ItemEvent.DESELECTED)
 c = ’−’;
 choices.setCharAt(index, c);
 pic.setIcon(new ImageIcon(" geek−" + choices.toString() + " .gif"));
 pic.setToolTipText(choices.toString());
 }
 }
 public static void main(String s[]) {
 JFrame frame = new JFrame(" CheckBoxDemo");
 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 });
 frame.setContentPane(new CheckBoxDemo());
 frame.pack();
 frame.setVisible(true);
 }
}

CODE LISTING CheckBoxDemo.java

Here is an example of event handling code, simplified from the tutorial. It displays a small
graphic, and has two checkboxes. When you change either checkbox, anitemListener responds
to the event and changes the graphic.

70 Java continued ...

7.5 Summary of topics

In this module, we introduced the following topics:

• The containment heirarchy

• Layout managers

• Menus

• Threading

• Event handling

Questions for module 5

1. Research the root pane that comes with every highest level container in Java Swing. Briefly
describe each of its componenets and state what each could be used for.

2. Give layout management code for the following:

3. Give code for a small menu-style application which makes the console beep whenever a menu
item is selected.

Further study

• TheJava tutorial at http://www.comp.nus.edu.sg/˜cs3283/ftp/Java/JavaTutorial/

• Swing Connectat http://www.comp.nus.edu.sg/˜cs3283/ftp/Java/swingConnect/

http://www.comp.nus.edu.sg/~cs3283/ftp/Java/JavaTutorial/
http://www.comp.nus.edu.sg/~cs3283/ftp/Java/swingConnect/

Chapter 8
Web interfaces

A common feature of many modern GUI applications is that there is a strong desire to
deliver the applications via web browsers. MSIE and Navigator have differences in their
implementation of (what should be) standard extensions such as Java, and so any web based

developments need to be tested on any target platforms.

However - its not really that hard to write CGI/ PHP and/or Java applications that work on all
platforms. In this section we will briefly look at CGI, PHP and Java.

8.1 CGI - Common Gateway Interface

CGI is a standard for helping web servers run external programs and returndynamicweb pages.

For example, a simple dynamic web page might return the current date and time, calculated by
running the ’date ’ program, and formatting the results as a web page. The following script
shows the idea:

 #!/bin/sh

 cat <<EOM1
 Content−type: text/html

 <HTML><HEAD>
 <TITLE>Output of data in HTML from CGI script</TITLE>
 </HEAD><BODY>
 <H1>Date:</H1>
 EOM1
 date
 cat <<EOM2
 </BODY></HTML>
 EOM2

CODE LISTING mydate.cgi

71

72 Web interfaces

When this script is placed in the directorypublic_cgi in your home directory on one of the
UNIX systems, then you may refer to

http://www-cgi.comp.nus.edu.sg:8000/~yourid/mydate.cgi

and you will get the following display:

This is of course a trivial example, but shows the fundamental idea of running a script, to get
dynamic content in a web page. In this case, the script is not passed any data from the client
browser - it just runs the shell/bin/sh and thedate program on the server.

Note that there is no requirement for your CGI program to be a shell script. You may use any
suitable scripting language, or compiled programs, andperl is very commonly used in this role.
The most important thing to remember is that whatever your CGI program does, it should not
take too long to process.

8.1 CGI - Common Gateway Interface 73

8.1.1 CGI environment variables

To pass parameters to CGI programs, environment variables are used. The followingperl script
can display all the enviroment variables passed to a CGI program:

#!/usr/local/bin/perl

print "Content−type: text/html\n\n";
print <<EndOfHTML;
<html><head><title>Print Environment</title></head>
<body>
EndOfHTML

foreach $key (sort(keys %ENV)) {
 print "$key = $ENV{$key}
\n";
}

print "</body></html>";

CODE LISTING env.cgi

When this script is run, we get something like the following. This may go some way towards
explaining to you how some systems know which web browser you are using!

DOCUMENT_ROOT= /usr/local/apache/htdocs
GATEWAY_INTERFACE= CGI/1.1
HTTP_ACCEPT = image/gif, image/x-
xbitmap, image/jpeg, image/pjpeg, image/png, */*
HTTP_ACCEPT_CHARSET= iso-8859-1,*,utf-8
HTTP_ACCEPT_ENCODING= gzip
HTTP_ACCEPT_LANGUAGE= en
HTTP_CONNECTION= Keep-Alive
HTTP_HOST = www-cgi.comp.nus.edu.sg:8000
HTTP_REFERER = http://www-cgi.comp.nus.edu.sg:8000/~hugh/
HTTP_USER_AGENT= Mozilla/4.79 [en] (X11; U; Linux 2.2.16 i686)
PATH = /usr/local/bin:/usr/bin:/bin:/usr/local/php/bin
QUERY_STRING =
REMOTE_ADDR= 137.132.90.155
REMOTE_HOST= dhcp-hugh.ddns.comp.nus.edu.sg
REMOTE_PORT= 3343
REQUEST_METHOD= GET
REQUEST_URI = /~hugh/env.cgi
SCRIPT_FILENAME = /home/staff/hugh/public_cgi/env.cgi
SCRIPT_NAME = /~hugh/env.cgi
SERVER_ADDR= 137.132.90.7
SERVER_ADMIN = websp@comp.nus.edu.sg
SERVER_NAME= www-cgi.comp.nus.edu.sg
SERVER_PORT= 8000
SERVER_PROTOCOL= HTTP/1.0
SERVER_SOFTWARE= Apache/1.3.19 (Unix) PHP/4.0.5 mod_perl/1.25
TZ = Singapore

The bold strings are the names of the environment variables passed to the CGI program. To the
right of the name is the value of that environment variable.

74 Web interfaces

8.1.2 CGI forms

CGI is commonly used for processing simple form-based applications. That is, the client display
has a form, and the user keys-in, or selects items in the form, which is then submitted to the CGI
program for processing. The principal mechanism for passing small form contents to the CGI
program uses environment variables, which are passed to the called CGI program.

The form contents are found inside an environment variable calledQUERY_STRING, as a series
of name/value pairs. This mechanism is known as theGETmechanism, and a typical URL
would look like this:

http://www-cgi.comp.nus.edu.sg:8000/~yourid/myform.cgi?name1=value1&name2=value2

An alternative mechanism is thePOSTmechanism, in which theSTDIN of the CGI program is
used to process the form data. A simple example of a form based web page:

<html><head>Simple form</head>
<body>
<form action="env.cgi" method="GET">
 First Name: <input type="text" name="First" size=30><p>
 Last Name: <input type="text" name="Last" size=30><p>
 <select name="Home">
 <option>Singapore <option>Malaysia
 <option>Indonesia <option>New Zealand
 <option>The rest of the world!
 </select>
 <input type="submit">
</form>
</body></html>

CODE LISTING form.html

This produces a page that looks like this:

When the form is submitted, theQUERY_STRINGlooks like this:

QUERY_STRING = First=Hugh&Last=Anderson&Home=New+Zealand

Within a CGI program, this series of name-value pairs may be used to return a dynamic web
page based on this form data.Perl is a particularly useful language to use in this context, as it
has powerful operators form managing strings, and theQUERY_STRINGcan besplit quickly
into its component parts. There are security issues with unrestricted CGI programs - since they
run powerful programs (like perl and csh) with arbitrary parameters, they may be a source of
(hacker) intrusion. It is for this reason that CGI usage is restricted here at NUS.

8.2 PHP 75

8.2 PHP

PHP is a server-side scripting language that is embedded in your web pages. It looks very like
standard HTML scripts, but when a client browser queries a PHP enhanced web page, the server
automatically interprets the PHP, and then sends back an ordinary HTML page. There are no
enhancements needed for browsers to access PHP web pages.

The two tags<?php and?> start and end a PHP script, and identify a PHP code segment. The
PHP code itself is a reasonably powerful programming language similar to Java, C and Perl, with
functions, variables and so on.

PHP stands forPHP - HypertextPreprocessor, a recursive acronym (like GNU -Gnu’s Not
UNIX), and is a generally useful HTML/server preprocessor. However it is particularly useful if
you wish your web pages to access databases. It is common to pair up PHP with MySQL, but
PHP is not limited to one database type. It may be used with any of the commercial databases.
For example if you wish to use PHP to access a Microsoft SQL server, you can install the ODBC
support in the server machine, and access the server directly.

Here is sample PHP code embedded in a PHP-enhanced web page. It shows PHP connection to
a MySQL server, selection of a database and an SQL query:

<?php
...
mysql_pconnect("host","user","password")

or die("Unable to connect to SQL server");
mysql_select_db("dbasename")

or die("Unable to select database");
$numguests = mysql_query("SELECT COUNT(*) FROM guests")

or die("Select Failed!");
...

?>

This may all be integrated with standard HTML and form-based web pages to construct a GUI.
PHP suffers less from the security issue than perl or csh CGI scripts do. After writing this
sentence I went to see what the latest security issues with PHP were, and discovered that recently
there has been a major loophole discovered in PHP POST upload code:

Each of the flaws could allow an attacker to execute arbitrary code on the victim’s
system.

The exploit appers to have been disovered before any use of it, so assuming you have a relatively
recent installation of PHP, you should in general have less security worries than with CGI scripts.

76 Web interfaces

8.3 Java enhanced

In Section6.5 we saw a very simple hello-world Java applet inserted in a web page. Here is a
little Java applet for a Lissajous figure:

/* @(#)Lissajous.java
 * Original version was written in 0.4 95/04/09
 * by Hugh Anderson for HotJava browser.
 *
 * Updated by L. Gladney to Java 1.0 JDK on 4/13/97.
 *
 * Patrick Chan (chan@scndprsn.Eng.Sun.COM) has suggested that it
 * would be nice if every point had a different display, so mouse
 * X motion now controls the ratio of frequencies, and mouse Y motion
 * controls the amplitude. */

import java.applet.Applet;
import java.awt.*;

public class Lissajous extends Applet implements Runnable {
 Thread animate= null;
 double pi=3.14159265359;
 int fx=50;
 int fy=100;
 int diffx=0;
 int amp=50,phase=0; // amplitude, phase
 int delay = 50; // speed set by length
 // of sleep between refreshes
 public void init() {
 resize(200, 200); // resize to fixed width,height
 }

 public void paint(Graphics g) {
 int X,Y,YY=0,lastx=0,lasty=0,temp=0,rev=0;
 g.drawRect(0, 0, size().width − 1, size().height − 1); // outline
 if (fy < fx) { // frequency
 temp = fx;
 fx = fy;
 fy = temp;
 rev = 1;
 }
 for (int x = 0 ; x <= 360 ; x += 4) { // loop
 X = (int) (amp*Math.sin(x*2.0*pi/360.0)); // x pos
 YY = (x*fy/fx)+phase;
 Y = (int) (amp*Math.sin(YY*2.0*pi/360.0));
 if (x==0) { lastx=X; lasty=Y; }
 if (rev==1) { g.drawLine(lastx+100,lasty+100,X+100,Y+100); }
 else { g.drawLine(lasty+100,lastx+100,Y+100,X+100); }
 lastx=X;
 lasty=Y;
 }
 if (rev==1) {
 temp=fx;
 fx = fy;
 fy = temp;
 }
 phase = YY;
 /* Fix an error ... phase shouldn’t increase forever..... */
 if (phase < 0) { phase += 360; };
 if (phase >= 360) { phase −= 360; };
 g.drawString(fx + " :" + fy,10,20);
 }

CODE LISTING Lissajous1.java

8.3 Java enhanced 77

Here is the rest of the code...

 public void run() {
 while (true) {
 repaint();

 try { Thread.currentThread().sleep(delay); // delay
 }
 catch (Exception e) { };

 }
 }

 public void start() {
 if (animate == null) {
 animate = new Thread(this);
 animate.start();
 }
 }
 public void stop() {
 if (animate != null) {
 animate.stop();
 animate = null;
 }
 }

 public boolean mouseDown(Event e, int x, int y) {
 Graphics gc;
 gc = getGraphics();

 diffx = fx−x;
 System.out.println(" Got a mouse event at " + x + " , " + y);

return true;
 }

 public boolean mouseDrag(Event e, int x, int y) {
 fx = x+diffx;
 if (fx <= 0) { fx = 1; };
 amp = y;

return true;
 }

 public String getAppletInfo() {
 return " Lissajous by Hugh Anderson/Larry Gladney ";
 }

 public String[][] getParameterInfo() {
 String [][] info = {
 {" delay "," int ", " delay, default=50"}
 };
 return info;
 }

}

CODE LISTING Lissajous2.java

78 Web interfaces

I wrote this code soon after the first Java language was made public, and had forgotten about it
until last week, when I went looking for an applet, and found my name on it! This code may be
found at

http://olddept.physics.upenn.edu/courses/gladney/minicourse/lectures/lecture2.html

or locally at

http://www.comp.nus.edu.sg/~hugh/Lissajous/Lissajous.html

This produces a page that looks like this:

8.4 Summary of topics 79

8.4 Summary of topics

In this module, we introduced the following topics:

• Web-based application architectures

• CGI, PHP and Java

Tutorial 6 - questions for week 12 (Mar 27, 2002)

1. (Research) Make up a simple CGI form, similar to the one given on page 71, which uses
thePOSTmethod for reading the data, and prints out the three fields.

2. (Research) Make up a simple PHP processed form, similar to the one given on page 71,
and which prints out the three fields.

3. Examine theLissajous.java code. What is the function of thediffx variable?

Further study

• http://php.net

80 Web interfaces

8.5 Assignment 4 - Implementation

In this assignment, you may work in a group of up to 4 people - or you may do it by yourself.
The assignment is worth 40% of your assignment grade, and is due at 5:00 p.m. on Friday, 19th
April, 2002 - please deliver to Hugh’s room. The assignment is to be done using Java/Swing.

Task:

Your task is to implement and document a multi-user simple text editor. By this I mean that
you and other people may safely simultaneously edit a single file (perhaps using a shared file
system). Note that there is no one correct way of doing this, and feel free to experiment with
different approaches.

You may re-use existing simple text editor code found in many introductory Java/Swing tutorials
if you wish, but the extensions to make it multi-user must be your own.

Here are brief descriptions of possible approaches to this problem:

1. (Simplest) Each user edits their own copy of the file. When the user saves the file, other
users are notified that the original file has changed, and given a choice to load the new
changed file, or to just continue.

2. (Medium) Each user edits a part of the file, chosen when they open the file from the re-
maining editable parts (For example, lines 1-100 for user 1, lines 101-200 for user 2).
When the user saves the (part) of the file, other users are notified that the original file has
changed, and their programs automatically load the new changed parts.

3. (Very tricky) Each user edits their own copy of the file. As changes are made, all users
screens are updated.

Feel free to dream up more advanced shared editing schemes. Note that since communication
between the programs may be tricky, I suggest your programs communicate through another
shared file.

Deliverables:

• A title page containing your names and matriculation numbers.

• A ten to twenty page document containing

– A brief summary and justification of the overall strategy used for shared editting
- perhaps with a state diagram describing the states of each edit program, with an
argument as to why your program is “safe”.

8.5 Assignment 4 - Implementation 81

– An overview of the interface design

– A user manual for the interface

• A disk containing the code, with a (small) README file to explain how I am supposed to
run your software.

Note that this assignment requires you to implement the application, not just to design one.

Assessment:

The assessment is as follows:

Documentation 25%
Code style/quality 25%
Justification of the strategy25%
Operation of the interface 25%

82 Web interfaces

Chapter 9
Visualization

T he visualization of data using GUI applications should be distinguished from other computer-
graphics concerns. In visualization, we are concerned withexplorationof data, with its at-
tendant concerns of encoding strategies and so on. In computer-graphics, we may be more

concerned with rendering techniques.

Before exploring the implementation of a 3D visualization, we look at some aspects of the con-
text within which the visualization is to be used.

9.1 The use of 3D

A successful visual metaphor has some analog withreal-world physics. Some studies suggest
that a 10-fold improvement in item density can be achieved in using three dimensional displays.

The etherman display has proven effective in observation of networks with 50 or less nodes,
but becomes cluttered and unusable with more nodes on-screen. By extending the display into
the third dimension, it immediately becomes clearer. Our familiarity with spatial location allows
us to understand that objects further away will be smaller, and this reduces the visual clutter.
However if afar awayobject increases in size, we immediately notice, and can rotate the display
to observe more closely. We notice even if thefar awayobject is still smaller (in screenreal-
estateterms) than closer objects. This human cognitive behaviour becomes apparent as soon
as sufficient visual cues have been given to persuade the observer that the display is in three
dimensions.

For example: Figure9.1 shows the output of an original program1 to display tasks active on a
UNIX machine. The size of the spheres indicate the amount of memory used by each process,
the colour represents the owner. This display can be rotated and used to examine activity in a
way unattainable using standard system process viewing tools. The display has over 100 visible
nodes, but it is still easy to identify and investigate individual nodes.

1http://opo.usp.ac.fj/˜hugh/Public/Viz/ThesisWork/processes1

83

http://opo.usp.ac.fj/~hugh/Public/Viz/ThesisWork/processes1

84 Visualization

Figure 9.1:Display of tasks in a multi-tasking environment.

9.2 OpenGL

OpenGL was originally the SGI in-house graphics system, but now is the most widely accepted
graphics standard, with chip, API and OS support for all platforms. It is possible to code directly
using the OpenGL API, but more normal to use a toolkit which encapsulates some abstraction,
built on top of OpenGL calls.

Open GL is standard on all UNIXes and all versions of Windows since Win95. The API supports
functions for rendering, buffering, anti-aliasing, shading, colouring, texture-mapping, a display
list, Z-buffering and so on. To give the flavour of raw OpenGL programming, here is a small
application:

9.3 Java 3D, VTK - toolkits for 3D 85

 #include <GL/glut.h>

 void
 Teapot (long grid)
 {
 /* ... code to construct drawlist of teapot here. */
 }

 static void
 Init (void)
 {
 glEnable (GL_DEPTH_TEST);
 glLightModelfv (GL_LIGHT_MODEL_LOCAL_VIEWER, local_view);
 /* Lighting model, materials... */
 }

 static void
 SpecialKey (int key, int x, int y)
 {
 switch (key) {
 case GLUT_KEY_UP:
 rotX −= 20.0;
 glutPostRedisplay ();
 break;
 /* Move in other directions */
 }
 }

 static void
 Draw (void)
 {
 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glPushMatrix ();
 /* ... translations ... */
 glCallList (teaList);
 glPopMatrix ();
 glutSwapBuffers ();
 }

 int
 main (int argc, char **argv)
 {
 glutInit (&argc, argv);
 type = GLUT_RGB | GLUT_DEPTH;
 type |= (doubleBuffer) ? GLUT_DOUBLE : GLUT_SINGLE;
 glutInitDisplayMode (type);
 glutInitWindowSize (300, 300);
 glutCreateWindow (" TeaPot");
 Init ();
 glutReshapeFunc (Reshape);
 glutKeyboardFunc (Key);
 glutSpecialFunc (SpecialKey);
 glutDisplayFunc (Draw);
 glutMainLoop ();
 }

CODE LISTING teapot.c

9.3 Java 3D, VTK - toolkits for 3D

These systems are 3D OO toolkits embedded in Java and C++ respectively. The Java 3D appli-
cation programming interface (API) provides a set of object-oriented interfaces that support a
simple, high-level programming model.

The Visualization ToolKit (VTK) is an open source OO software system for 3D consisting of a
C++ class library, and several interface layers for Tcl/Tk, Java, and Python. VTK has a wide
variety of visualization and graphical functions, and has been installed and tested on both UNIX
and Windows.

86 Visualization

9.4 Case study - network traffic application

A user-requirement specification for a network traffic application may begin with something like:

This visualization is to assist network managers in planning and monitoring their
networks. It allows interactive exploration of network datalink traffic, and is in-
tended for use both for visualization of immediate-mode (real-time) data, and for
visualization of historical data. (The visualization is the same in each case, except
that time only travels forwardin the immediate mode.)

The visualization will help answer questions such as the following:

• Which segments carry the most traffic?

• Which sections of the network are down?

• At what times, and where do traffic bottlenecks occur?

• What is the line utilization for different lines at different times?

• What types of traffic are used most?

• Would routing or switching be effective here?

For thisnetworktraffic application, the following elements are represented:

• Background: - to convince the viewer that the display isthree dimensional...

• Nodes: - a computer, a network device...

• Traffic: - the amount of traffic flow...

• Protocol: - thetypeof traffic...

• Errors: - errors in traffic could be further trafficprotocols...

• Trends: - for changes over time...

• Association: - for network insights...

9.4.1 Node representation

In our chosen context, the nodes represent computers or network components such as hubs,
routers, bridges or switches. In locational or representational displays we may want to differen-
tiate between the type of node, but in the moreabstractdisplays, there may be no need to do
this.

In Figure9.2we see a range of possible options for more concrete representations of nodes.

The computer represented in Figure9.2(a) has about 2000 flat triangular surfaces (some of them
hidden). If we were visualizing a campus with (say) 500 computers using this representation,

9.4 Case study - network traffic application 87

(a) 2000 polygons (b) 84 polygons (c) 14 polygons

Figure 9.2:Concrete node representations.

Machine Rendering speed Computer (a) Computer (b) Computer (c)

Graphics Workstation 485,000∆/sec 0.485 frames/sec 11.5 frames/sec 69 frames/sec

PC1 30,000∆/sec 0.03 frames/sec 0.71 frames/sec 4.3 frames/sec

PC2 11,000∆/sec 0.011 frames/sec 0.26 frames/sec 1.6 frames/sec

Table 9.1:Workstation redraw speed.

then our rastering engine has to recalculate the positions and shading of 1,000,000 polygons
each time it redraws the screen. This will happen even if the item is sofar awaythat it only takes
up a single pixel on the screen.

A typical modern hardware rastering engine can calculate 485,000 shaded∆/sec (triangles per
second), and hence our screen refresh rate would be about half a frame per second, giving a
jerky look. By contrast, the computer shown in Figure9.2(c) has only 14 flat triangular surfaces,
giving a frame rate in excess of 70 frames per second.

Standard PCs often come with graphics cards that support pixel movement on screen, but their
overall performance in shaded∆/sec is normally considerably below 485,000 polygons per sec-
ond. Table9.1gives the resultant frame rates for displaying onscreen 500 of the node represen-
tations in Figure9.2.

It is clear from this table that if we wish our visualizations to be viewed on a range of platforms,
we must choose our node representations carefully to minimize rendering time.

Some representation methods for three dimensional objects allow differentlevels of detail. In
the VRML specification, a single object may be represented in different ways depending on how
much screenreal estateit uses up. If the object is near you, it could be represented in detail, but
if it is a long way away, the representation could be as simple as a coloured square.

88 Visualization

The following VRML code represents a cone in two ways using an LOD (Level Of Detail) node.
If the distance from the user to the object is smaller than the first range value specified, then the
first version is drawn. If the distance is greater than the last range specified, the last version is
drawn.

#VRML V2.0 utf8
LOD {

range [20]
level [

#full detail 16 sided cone
Shape{

appearance Appearance { material Material { diffuseColor 1.0 1.0 1.0}}
geometry Extrusion{

crossSection [-1 0, 0 0, -1 -2 -1 0]
spine [1 0 0 , 0.866 0 0.5, 0.5 0 0.866, 0 0 1 , -0.5 0 0.866, -

0.866 0 0.5,
-1 0 0, -0.866 0 -0.5, -0.5 0 -0.866, 0 0 -1 ,0.5 0 -0.866,

0.866 0 -0.5, 1 0 0]
}

}
#low detail 4 sided cone, actually a pyramid
Shape{

appearance Appearance { material Material { diffuseColor 1.0 1.0 1.0}}
geometry Extrusion{

crossSection [-1 0, 0 0, -1 -2 -1 0]
spine [1 0 0 , 0 0 1, -1 0 0, 0 0 -1 , 1 0 0]

}
}

]
}

9.4.2 Traffic and protocol representation

A simple immediate way to represent traffic between two nodes is to just draw a line between
them. The nature of network communication on a typical Local Area Network (LAN) is such
that the resultant lattice is likely to be relatively sparse.

For example: at the datalink layer, on average, a workstation at any one time may only be
communicating with six or seven other datalink addresses - two broadcast addresses, (say) two
file servers, a WINS or DNS server. and a proxy. So - rather than having a lattice withn2−n

2

interconnections, we havek(n− 1) interconnections, wherek is some small integer. Even so, a
lattice with 500 nodes may have 3,000 interconnections and may look jumbled.

A line indicates source and destination, but not theamountof traffic. Three systems for this
purpose have been examined:

1. Colour coding (black through red to white for maximum traffic),

2. Line width, and

3. The length of partial lines, as discussed in Eick’s papers.

Using a linear increase in the line width appears most effective, although it does increase clutter.
It also leaves the colour information free for use in some other encoding. The linear scale needs a
sensible maximum, and experimentation has shown that a maximum width should be equivalent
to the size of the node.

A simple line or cylinder also does not tell which way the traffic is flowing. We evaluated the
following cues by modeling them ingeomview, a geometrical modelling package.

9.4 Case study - network traffic application 89

Figure 9.3:Partial length representation of bi-directional traffic.

1. Separate arrows

2. Partial lengths

In Figure9.3we see the traffic between two computers, the size of the cylinder between the ma-
chines indicating the total amount of network traffic, and the two colours indicating the relative
amounts of traffic going each way. The nodes and cylinders themselves are coloured according
to the dominant protocol type.

9.4.3 Trend representation

Trends are sometimes difficult to find in large sets of data such as found in our application. Once
an examination of a visualization has indicated that a trend may be possible, it is normally easy
to frame the questions needed to verify the trend.

• “It looks like HTTP usage on these segments is increasing...”
(⇒Plot HTTP usage for the segment machines versus time).

• “It looks like HTTP usage is increasing when FTP usage is decreasing...”
(⇒Plot HTTP and (1-FTP) versus time).

Graphing continues to be the pre-eminent way of representing trends and the role of visualization
is to assist in finding the trends.

The four-dimensional visualization methods outlined and demonstrated by Olaf Holt and Nils
McCarthy in NDdemo (the fourth dimension being explicit time) could perhaps be used in trend
analysis, but the visualization is a little hard to use.

A final method is to attempt to encode previous visualizationson-top-of the current one (but
perhaps semi-transparent) - the idea here is one ofvisual echoes. In only some circumstances
can this be successful. There are two options:

1. Echoes are fixed on the screen, and we can move the visualization away from them, leaving
a trail like this:
In the worst case though, we have just ended up using one of our three display dimensions
for “time” .

90 Visualization

Figure 9.4:Locational view

2. Semi-transparent echoes are co-located with the visualization. In this case, we can only
show some of the history. We can show a reducing item, but not an increasing one.

9.4.4 Display

In Figure9.4, we see an early locational view showing the fixed components of the visualization,
and modeled usinggeomview. It shows nodes for the computers, floor plans for the buildings,
and a transparent roof. The display uses the normal 3D navigation tools for adjustment. From the
display it is easy to identify the location of machines, and the display should be efficient enough
to support display and manipulation of the entire network (with 500 machines as a suitable goal),
and - yes - the computersarefloating in mid air. (Since we are concerned with efficiency we
choose the simplest understandable visualization, and tables just become extra polygons to draw).

The visualizing tool supports rotation and translation of the display, so that the observer can eas-
ily focus on regions of interest. Suitable systems are found in the CosmoPlayer VRML viewer,
and ingeomview. Note that this visualization is not dependant on the navigation or implemen-
tation method.

Cables and network infrastructure are not marked on the display, but the display does support
an aggregation-by-rule construct. This aggregation can be used to associate machines all on the
same segment, or all used by the same department.

9.4 Case study - network traffic application 91

Aggregation Nodes

Figure 9.5:Aggregation nodes

The components are chosen to be the best minimum complexity representation consistent with
fast updates. The frame update speed for the most complex display is better than 2 frames per
second.

Each node or aggregation in the overview display is clickable to turn it off or on. If a node is
turned off, its traffic no longer is displayed (either directly or as part of some aggregated traffic).
If an aggregation is turned off, any existing traffic displays to its nodes are removed. This facility
is used to allow fast reduction of visual clutter.

Aggregation nodes also have an aggregationswitch, which allows them to combine all traffic for
subsidiary nodes. When this switch is on, lines connect the aggregation to its subsidiary nodes.

The aggregation node floats above its associated nodes. In Figure9.5, we see two aggregation
nodes, with the one on the right aggregating traffic to and from all its subsidiary nodes. All
traffic to or from these nodes is displayed going to the aggregation node. The other nodes are not
aggregated, and display traffic directly.

Each node or aggregation in the overview display is clickable to identify specific information
about that node. This information does not replace the display, but appears in a separate window.
Initially this information may just be textual information such as the name of the node along
with traffic totals, but eventually, it is expected that the drill-down display will be the metaphor
display specified elsewhere, showing only the selected node in 3D, along with any associated
nodes.

92 Visualization

Operating System Web Browser VRML 2.0 Plugin

IRIX Navigator 3.01S CosmoPlayer 1.0.2b3 or later

Communicator 4.04 CosmoPlayer 1.0.2b3 or later

Communicator 4.07 CosmoPlayer 2.1 beta

Macintosh Communicator 4.04 CosmoPlayer 2.1 or later

WIN32 Navigator 3.01 CosmoPlayer 1.0 beta 3 or Intervista WorldView 2.0 or later

Communicator 4.04 CosmoPlayer 1.0 beta 3 or Intervista WorldView 2.0 or later

MSIE 3.0 CosmoPlayer 1.0 beta 3 or Intervista WorldView 2.0 or later

MSIE 4.0 CosmoPlayer 1.0 beta 3 or Intervista WorldView 2.0 or later

Table 9.2:Systems which support the EAI.

9.5 3D VRML visualization implementation

The VRML visualizer is a relatively small Java program which must be loaded as an applet along
with a VRML view of the network. A small web page is created, and may be used to view the
visualization using a web browser such as Netscape along with the CosmoPlayer VRML plugin.

Unfortunately, not all combinations of web browser and VRML plugin work correctly with the
EAI, but the systems in Table9.2are known to work. These systems were current in 1999. This
year (2002) all the systems I tried at NUS appeared to work fine.

Load the default web page in the directory, and the visualization should be visible. To finish using
the visualizer, you must exit the browser entirely. If not, the Java applet keeps communicating
with thecollector.

In Figure9.6, we see an active VRML display within a browser. The computer nearby is gener-
ating a lot of traffic. In the distance we can see other nodes, and the roof and floors.

9.5.1 3DVNT VRML software

3DVNT includes software to create a default HTML web page for the VRML visualization. The
current default web page is like this:

<html><head> <title>Sample 3DVNT Page</title> </head>
<center><H1>Sample 3DVNT Page </H1></center>
<center> <embed src="root.wrl" height="600" width="700"> </center>
<center> <applet code="View1.class" width="100" height="10" mayscript>
<PARAM name="segment" value="MACS"> <PARAM name="port" value="9876">
<PARAM name="host" value="opo.usp.ac.fj"> </applet> </center>
OK?
</html>

9.5 3D VRML visualization implementation 93

Figure 9.6:3DVNT view within Netscape browser.

94 Visualization

Theroot.wrl file which forms the basis of the VRML visualization is of the following format:

PROTO CLUSTER [] { ... } # Cluster definition
PROTO KEYBOARD [] { ... } # Keyboard definition
PROTO SCREEN [] { ... } # Screen definition
PROTO GLOBE [] { ... } # Traffic sphere definition
Some setting up declarations
Background { skyColor .4 .66 1 }
NavigationInfo { type ["EXAMINE", "ANY"] speed 400 }
Viewpoint { position 0 400 0 orientation 0 1 0 4 description "Camera 1" }
Lines, floors and roofs
DEF LINES Transform { ... }
DEF FLOORS Transform { ... }
DEF ROOFS Transform { ... }
and then the nodes
DEF node1 Transform { ... }
DEF node2 Transform { ... }
... and so on ...

Each node is of the following form:

DEF node1 Transform {
translation 4350 150 4365
rotation 0 1 0 4.71238
children [

KEYBOARD {}
SCREEN {}
DEF node1box Transform {

children [
Shape {

appearance Appearance { material DEF node1boxcolor Material { diffuseColor 0.8 0.8 0.8 } }
geometry Box { size 50 50 50 }

}] }
DEF node1sphere Transform {

scale 1 1 1
children [

Shape {
appearance GLOBE {}
geometry Sphere { radius 1 }

}] }] }

The Java visualyzer software maintains a link to a remote data collector, and uses the EAI to
modify the images in the VRML view.

9.5 3D VRML visualization implementation 95

// using the VRML External Interface.

import java.applet.*;
import java.awt.*;
import java.util.*;
import vrml.external.field.*;
import vrml.external.exception.*;
import vrml.external.Node;
import vrml.external.Browser;
import java.io.*;
import java.net.*;

public class View1 extends Applet {
// public static final int DEFAULT_PORT = 9877;
 Browser browser;
 Socket s = null;
 DataInputStream in = null;
 String line;

 public void init() {
 System.out.println("Test.init()...");
 }
 void SocketStart () throws java.io.IOException {
 String port = this.getParameter("port");
 int p = Integer.parseInt(port);
 try {
 String host = getCodeBase().getHost();
 System.out.println("Request came from: " + host);
 s = new Socket(host, p);
 }
 catch (UnknownHostException e) {
 System.out.println("No socket: " + e);
 }
 }
 public void start() {
 int count=0;
 Node node2sphere=null;
 Node appear=null;
 EventInSFVec3f[] scalein=new EventInSFVec3f[100] ;
 EventInSFColor[] appears=new EventInSFColor[100] ;
 float[] val = new float[3];
 int[] lastval = new int[100];
 int n;
 String id,vl;

 while (count != 100) {
 scalein[count] = null;
 appears[count] = null;
 lastval[count] = 0;
 count=count+1;
 }
 try {
 SocketStart();
 }
 catch (java.io.IOException e) {
 System.out.println("No socket: " + e);
 }

 System.out.println("Test.start()...");
 browser = (Browser) vrml.external.Browser.getBrowser(this);
 System.out.println("Got the browser: " + browser);

 count = 0;
 try {
 in = new DataInputStream(s.getInputStream());

Mar 05, 99 11:51 Page 1/3View1.java
Printed by Hugh Anderson

Thursday August 26, 1999 1/3

96 Visualization

 while(true) {
 line = in.readLine();
 if (line == null) {
 System.out.println(" Server closed connection.");
 break;
 }
 if (line.regionMatches(0," n",0,1)) {
 n = line.indexOf(32,2);
 id = line.substring(2,n);
// System.out.println(">>>"+id+"<<<");
 vl= line.substring(n+1);
// System.out.println("+++"+vl+"−−−");
 Integer a = Integer.valueOf(id);
 Integer b = Integer.valueOf(vl);
 if (scalein[a.intValue()]== null) {
 try {
 node2sphere = browser.getNode(" node"+id+" sphere");
 System.out.println(" Got the sphere node: " + node2sphere);
 }
 catch (InvalidNodeException e) {
 System.out.println(" PROBLEMS! node2sphere: " + e);
 }
 try {
 scalein[a.intValue()] = (EventInSFVec3f) node2sphere.ge
tEventIn(" scale");
 System.out.println(" Got the sphere scale node: " + appears[a.in
tValue()]);
 }
 catch (InvalidNodeException e) {
 System.out.println(" PROBLEMS! (scalein): " + e);
 }

 try {
 appear = browser.getNode(" node"+id+" boxcolor");
 System.out.println(" Got the Boxcolor node: " + appear);
 }
 catch (InvalidNodeException e) {
 System.out.println(" PROBLEMS! appearance: " + e);
 }
 try {
 appears[a.intValue()] = (EventInSFColor) appear.getEven
tIn(" set_diffuseColor");
 System.out.println(" Got the Boxcolor color node: " + appears[a.i
ntValue()]);
 }
 catch (InvalidNodeException e) {
 System.out.println(" PROBLEMS! appearance color: " + e);
 }
 }
 if (b.intValue()==−1) {
 val[0] = (float)1.0;
 val[1] = (float)1.0;
 val[2] = (float)1.0;
 } else {
 val[0] = (float)(b.intValue()*20)+1;
 val[1] = (float)(b.intValue()*20)+1;
 val[2] = (float)(b.intValue()*20)+1;
 }
 scalein[a.intValue()].setValue(val);

 if ((b.intValue()==0) != (lastval[a.intValue()]==0)) {
 if (b.intValue()==0) {
 val[0] = (float)0.8;
 val[1] = (float)0.8;
 val[2] = (float)0.8;
 appears[a.intValue()].setValue(val);

Mar 05, 99 11:51 Page 2/3View1.java
Printed by Hugh Anderson

2/3 Thursday August 26, 1999

9.5 3D VRML visualization implementation 97

 } else {
 if (b.intValue()==−1) {
 val[0] = (float)0.1;
 val[1] = (float)0.1;
 val[2] = (float)0.1;
 appears[a.intValue()].setValue(val);
 } else {
 val[0] = (float)0.0;
 val[1] = (float)1.0;
 val[2] = (float)0.0;
 appears[a.intValue()].setValue(val);
 }
 }
 }

 lastval[a.intValue()]=b.intValue();

 }
// System.out.println(line);
 }
 }
 catch (IOException e) { System.out.println(" Reader: " + e); }

 }

 public Browser getBrowser() {
 return browser;
 }

}

Mar 05, 99 11:51 Page 3/3View1.java
Printed by Hugh Anderson

Thursday August 26, 1999 3/3

98 Visualization

9.6 Summary of topics

In this module, we introduced the following topics:

• Visualization versus computer-graphics

• OpenGL

• (Briefly) Java3D, VTK

• VRML/Java/EAI

Tutorial 7 - questions for week 13 (April 3, 2002)

1. Find a minimal VRML file which constructs a solid cube.

2. Find minimal OpenGL display-list code to draw a cube.

3. Examine the Java code given for using the EAI to modify the VRML. How exactly does
the code get a reference to a VRML node?

4. Examine the Java code given for using the EAI to modify the VRML. How exactly does
the code modify a VRML node?

Further study

• sunsite for Java3D

• The EAI specification

Chapter 10
MFC

T he Microsoft Foundation Classes provide all the classes needed to produce GUI (Microsoft)
Windows programs. A typical development cycle with MFC involves using a rapid appli-
cation development tool such as the wizard found in Visual C++, and then modifying the

resultant source code. The RAD development cycle is relatively easy, but unfortunately, the
second phase is not.

10.1 MFC menus

There are many ways to create menus in MFC, but it is common to use a special menu resource
file. A resource file for a simple File/Quit menu might look like this:

#define MYAPP_EXIT 3210
MyApp MENU

POPUP “File”
{

MENUITEM “Exit”,MYAPP_EXIT
}

}

In theCreate call, you can do something like this:

Create(NULL, “Example”, ..., CRect(...), NULL, “MyApp”);

The MYAPP_EXITmessage may be bound using theDECLARE_MESSAGE_MAP()macro, and
with the following declaration:

ON_COMMAND(MYAPP_EXIT,OnExit)

99

100 MFC

Finally, we need a message handler:

afx_msg void CMenusWin::OnExit()
{

SendMessage(WM_CLOSE);
}

10.2 MFC Programming

Here is a simple initial example of an MFC application built using Microsoft Visual C++, modi-
fied from the Deitel&Deitel MFC book:

The code to do this is here:

#include <afxwin.h>

class CFirstWindow : public CFrameWnd {
public:
 CFirstWindow();
 ~CFirstWindow();
private:
 CStatic *m_pGreeting;
};

CFirstWindow::CFirstWindow()
{
 Create(NULL,
 " First Application",
 WS_OVERLAPPEDWINDOW,
 CRect(100, 100, 400, 220));
 m_pGreeting = new CStatic;
 m_pGreeting−>Create(
 " Hello World!", // text
 WS_CHILD | WS_VISIBLE | WS_BORDER
 | SS_CENTER,
 CRect(80, 30, 200,50),
 this);
}

CFirstWindow::~CFirstWindow()
{
 delete m_pGreeting;
}

class CFirstApp : public CWinApp {
public:
 BOOL InitInstance()
 {
 m_pMainWnd = new CFirstWindow();
 m_pMainWnd−>ShowWindow(m_nCmdShow);
 m_pMainWnd−>UpdateWindow();
 return TRUE;
 }

} FirstApp;

CODE LISTING FirstApp.cpp

Note the use of Hungarian notation:

10.3 MFC class hierarchy 101

Prefix Meaning

C Class declaration
m_ Class member variable
p Pointer

n or i Integer
On Event or message handler

This appears relatively easy, just instantiating aCstatic object (a simple window). We can use
much the same techniques to create dialogs (CDialog) or drawing windows (CFrameWnd)

10.3 MFC class hierarchy

The following heirarchy diagram shows the MFC components.

102 MFC

10.4 Summary of topics

In this module, we introduced the following topics:

• MFC

• MFC class heirarchy

• Simple programming

Tutorial 8 - questions for week 14 (April 10, 2002)

1. Give a minimal menu driven application for MFC.

2. Compare the MFC message model with the Java Event model.

3. Outline a strategy for porting an MFC program to UNIX.

4. Outline a strategy for porting a Tcl/Tk program to MFC.

Bibliography

[1] J. P. Bowen, M. G. Hinchey, and D. Till, editors.ZUM’97: The Z Formal Specification
Notation, 10th International Conference of Z Users, Reading, UK, 3–4 April 1997, volume
1212. Springer-Verlag, 1997.

[2] Stephen G. Eick. Engineering perceptually effective visualizations for abstract data.

[3] J. Jacky.The Way of Z: Practical Programming with Formal Methods. Cambridge University
Press, 1997.

[4] Nancy Leveson and Clark S. Turner. An investigation of the therac-25 accidents.IEEE
Computer, 26(7):18–41, July 1993.

[5] Bertrand Meyer.Object Oriented Software Construction. Prentice Hall, 1991.

[6] Roger S. Pressman.SOFTWARE ENGINEERING A Practitioner’s Approach. McGraw-Hill,
4 edition, 1997.

[7] E. Swing. Flodar: Flow visualization of network traffic.IEEE Computer Graphics and
Applications, 18(5):6–8, September 1998.

103

104 BIBLIOGRAPHY

Appendix A
Extra notes on Tcl/Tk

T his section includes some extra material related to the use of Tcl/Tk for developing GUI
applications. In particular - constructing menu items, using the Tk Canvas and structured
data items. There are pointers to some supplied reference material. Note the following

points related to trying out Tcl/Tk:

• If you are usingcygwin-b20 , the wish interpreter is calledcygwish80.exe . This file is
found in the directory/cygnus/cygwin-b20/H-i586-cygwin32/cygwish80.exe . Make a
copy of this file in the same directory, and call itwish8.0.exe for compatibility with UNIX
Tcl/Tk scripts.

• In the first line of your tcl files, you should put#!wish8.0

• If you download the file~cs3283/ftp/demos.tar and extract it into/cygnus , you will
have a series of Tcl/Tk widget examples in/cygnus/Demos . Change into the directory
/cygnus/Demos , and type./widget .

• There is a Tcl/Tk tutor, and many learn-to-program-Tcl/Tk documents available at many
sites on the Internet - if you continue to have trouble, you may wish to try them.

There is no substitute for just trying to program - set yourself a small goal, and discover how to
do it in Tcl/Tk.

105

106 Extra notes on Tcl/Tk

A.1 Tcl/Tk menus

The menu strategy is fairly simple -

1. Make up a frame for the menu

2. Add in the top level menu items

3. For each top level item, add in the drop-menu items

4. For each nested item, add in any cascaded menus.

5. Remember to pack it...

As an example, the following code creates a fairly conventional application with menus, a help
dialog, and cascaded menu items.

#!/usr/bin/wish

frame .mbar −relief raised −bd 2
pack .mbar −side top −fill x

frame .dummy −width 10c −height 100
pack .dummy

menubutton .mbar.file −text File −underline 0 −menu .mbar.file.menu
menu .mbar.file.menu −tearoff 0
.mbar.file.menu add command −label " New..." −command " newcommand"
.mbar.file.menu add command −label " Open..." −command " opencommand"
.mbar.file.menu add separator
.mbar.file.menu add command −label Quit −command exit
pack .mbar.file −side left

menubutton .mbar.edit −text Edit −underline 0 −menu .mbar.edit.menu
menu .mbar.edit.menu −tearoff 1
.mbar.edit.menu add command −label " Undo..." −command " undocommand"
.mbar.edit.menu add separator
.mbar.edit.menu add cascade −label Preferences −menu .mbar.edit.menu.prefs
menu .mbar.edit.menu.prefs −tearoff 0
.mbar.edit.menu.prefs add command −label " Load default" −command " defaultprefs"
.mbar.edit.menu.prefs add command −label " Revert" −command " revertprefs"
pack .mbar.edit −side left

menubutton .mbar.help −text Help −underline 0 −menu .mbar.help.menu
menu .mbar.help.menu −tearoff 0
.mbar.help.menu add command −label " About ThisApp..." −command " aboutcommand"
pack .mbar.help −side right

proc aboutcommand {} {
 tk_dialog .win {About this program} " Hugh wrote it!" {} 0 OK
}

CODE LISTING Menus.tcl

A.2 The Tk canvas 107

A.2 The Tk canvas

The Tk canvas widget allows you to draw items on a pane of the application. Items may be
tagged when created, and then these tagged items may be bound to events, which may be used
to manipulate the items at a later stage.

This process is described in detail in Robert Biddle’s “Using the Tk Canvas Facility”, a copy of
which is found at~cs3283/ftp/CS-TR-94-5.pdf .

Note also the use of dynamically created variable names (node$nodes).

108 Extra notes on Tcl/Tk

Tutorial 5 - questions for week 5 (Feb 6, 2002)

All these questions relate to practical programming concerns in Tcl/Tk.

1. How can you create a cascade menu item where the cacaded items are radiobuttons (i.e. -
only can select one at a time).

2. Tcl only supports a simple idea of variable scope. How can you create global variables?
How can you create local variables? How can you refer to global variables within a proc?

3. How would you create structured type variables in Tcl? (i.e. a variable with various sub-
components).

4. How do you change the name on the surrounding window decoration for an application?

5. How can you create a file-selection dialog box when you click on an ’open’ menu item?
How does your appliaction know which file was selected? How does your application
know when no file is selected?

6. How can you change the cursor (to -say- a watch), when it moves over a particular item
embedded in a canvas?

Further study

• TclTk widgets:
http://www.comp.nus.edu.sg/˜cs3283/ftp/CS-TR-94-5.pdf,

http://www.comp.nus.edu.sg/˜cs3283/ftp/demos.tar.

http://www.comp.nus.edu.sg/~cs3283/ftp/CS-TR-94-5.pdf
http://www.comp.nus.edu.sg/~cs3283/ftp/demos.tar

A.3 Assignment 3 - Implementation 109

A.3 Assignment 3 - Implementation

I have moved assignment 4 here, as we have not yet got to Java/Swing.

In this assignment, you may work in a group of up to 4 people - or you may do it by yourself.
The assignment is worth 30% of your assignment grade (10.5% of your final mark), and is due
at 5:00 p.m. on Friday, 8th March, 2002 - please deliver to Hugh’s room. The assignment is to
be done using Tcl/Tk or Perl/Tk or C/Tk.

Task:

Your task is to implement and document a user interface for a new software analysis tool, which
I will attempt to describe below. Note that this is a real task, and parts of this tool have already
been prototyped. However I am looking for better ideas :)

The interface is intended to manage the overall process of an analysis of program source code.
Beginning with some initial document, the developer uses (external) program analysis tools1 to
transform an existing document into a new document. This document in turn may be further
transformed using the same, or different analysis tools.

The user of your application will use a range of different analysis tools, in different orders, and
some analysis sequences will be useful, and others may not. However all transformations are to
be recorded.

The first prototype of the user interface is shown in FigureA.1, however, your version need not
look at all like this - my expectation is that you should be able to come up with better interfaces
- I am a little worried about putting this one up, because It maylimit you in your development
(which I do not want to do). The interface maintains a library of documents. The activities
performed here are:

• Entering new documents into the library from external source code.

• Transforming existing documents using a range of analysis programs.

The process of applying analysis programs to transform documents in the library leads to a
library structure which is a directed graph without loops. This may be represented by a hierarchy
diagram, and this sort of diagram is used as a basis for the interface.

The idea here is that each dot represents a document, with the directed arrows representing
the application of an analysis program to a document. Operations on documents are done by
selecting the document in the GUI interface, and then selecting actions (in this case from a
menu). Once the external analysis program has created a new document, it is displayed as a dot
in the interface, with its directed arrows.

1These tools have already been developed in a separate project, but may be run as commands using theexec Tcl
facility. For exampleprove1 <filein.txt >fileout.txt .

110 Extra notes on Tcl/Tk

Figure A.1:Document management tool

The graphical view displayedshould be easy to navigate, and display a complete history of the
program analysis.

Notes:

The following points form part of the functional specification of the user interface.

1. At any time you should be able to save and restore the state of the development (i.e. all the
things visible, and the state of the library).

2. The program should be safe on failure - that is - if an external transformation tool dies for
some reason, it will not affect the stability of your library and display.

3. The general flow of operation of the interface is you select (one or more) documents, and
then select a single analysis tool, which is passed the selected documents, and returns a
new document. The new display should reflect the new document’s position in the library.

4. The document names are managed by your tool, which might name the documents accord-
ing to some internal strategy (doc1, doc2, doc3 :). However - the tool should also maintain
descriptions associated with each document, that may be entered by the user, and displayed
later. (Perhaps something like - if you right-click on a document, you get the description).

5. The transforms between documents also may have attached descriptions, editable and dis-
playable in a similar manner.

6. The descriptions should be time stamped.

7. The transforms should be time stamped.

A.3 Assignment 3 - Implementation 111

Tips:

I’m just guessing here, but

1. You probably have to maintain a configuration file (or files) for the library - containing the
state of the display, and the names and descriptions of the elements in the display.

2. Rather than hard coding which transform tools are to be used, you might read a config-
uration file containing the tools and which menu/button items they are to be associated
with.

3. You may dummy up tools, (tool1, tool2 tool3 and so on), by just using a simple program
like cat or copy, to make an exact duplicate of the document.

Deliverables:

• A title page containing your names and matriculation numbers.

• A ten to twenty page document containing

– A brief summary of the overall design constraints

– An overview of the interface design

– A user manual for the interface

• A disk containing the code, with a (small) README file to explain how I am supposed to
run your software.

Note that this assignment requires you to implement the application, not just to design one.

Assessment:

The assessment is as follows:

Documentation 25%
Code style/quality 25%
Operation of the interface50%

112 Extra notes on Tcl/Tk

Appendix B
Case study: GUI implementation

H ere is an example of aquick-n-dirtyGUI interface for a prototype application used for
analysis of software. The prototype application uses libraries of C and fortran (!) routines
to do numerical analysis, and a script written in perl to glue these all together, and transform

complex data structures from binary to readable forms.

The GUI interface is easy to use and represents about 5% of the effort in developing the applica-
tion.

113

114 Case study: GUI implementation

B.1 Perl/Tk code

Perl has a Tk module - the perl interface to Tk - and it provides most of the user interface. The
mainline is quite simple:

 use Tk;
 my $currentslice = 0;
 my $currentpp = 0;
 my $disptype = 2;
 my $main = new MainWindow;

 <<SetupMenu>>
 <<SetupFileMenu>>
 <<SetupEditMenu>>
 <<SetupViewMenu>>

 $main−>configure(−menu =>$menubar);

 <<SetupScrolledMainArea>>

 MainLoop;

 <<FileOpenDialogBox>>

CODE LISTING mainline.pl

We then set up the menu bar. In this code we use the cascade model.

 $menubar = $main−>Menu;
 $filemenu = $menubar−>cascade(−label=>" File");
 $editmenu = $menubar−>cascade(−label=>" Operate");
 $viewmenu = $menubar−>cascade(−label=>" View");
 $helpmenu = $menubar−>cascade(−label=>" Help");
 $helpmenu−>command(−command => \&about_choice,
 −label => " About TkMenu...",
 −underline => 0);

CODE LISTING SetupMenu.pl

And then we set up the menu items in each menu. First the file menu:

 $filemenu−>command(−command => sub { fileDialog($main, ’ open’);
 printf " Opening $thisfile\n";
 readfile($thisfile);
 writefile($thisfile . " .ppx");},
 −label => " Open...",
 −underline => 0);
 $filemenu−>separator;
 $filemenu−>command(−label => " Exit",
 −command => \&exit_choice,
 −underline => 1);

CODE LISTING SetUpFileMenu.pl

B.1 Perl/Tk code 115

Then the edit menu:

 $editmenu−>command(−command => sub {Tp($currentslice,1,1);},
 −label => " Crank with widening...",
 −underline => 0);
 $editmenu−>command(−command => sub {Tp($currentslice,1,10);},
 −label => " Crank with widening (10X)...",
 −underline => 0);
 $editmenu−>command(−command => sub {Tp($currentslice,0,1);},
 −label => " Crank...",
 −underline => 0);
 $editmenu−>command(−command => sub {Tp($currentslice,0,10);},
 −label => " Crank (10X)...",
 −underline => 0);
 $editmenu−>command(−command => sub {Cousot($currentslice);},
 −label => " Cousot...",
 −underline => 0);
 $editmenu−>separator;
 $editmenu−>command(−command => sub {widening($currentslice);},
 −label => " Widen...",
 −underline => 0);

CODE LISTING SetUpEditMenu.pl

Finally the view menu:

 $viewmenu−>command(−command => sub {$disptype=0;display($currentslice,0);},
 −label => " Show LRS...",
 −underline => 0);
 $viewmenu−>command(−command => sub {$disptype=1;display($currentslice,1);},
 −label => " Show Actual Transform...",
 −underline => 0);
 $viewmenu−>command(−command => sub {$disptype=2;display($currentslice,2);},
 −label => " Show Equations...",
 −underline => 0);
 $viewmenu−>command(−command => sub {$disptype=3;display($currentslice,3);},
 −label => " Show Default Transform...",
 −underline => 0);
 $viewmenu−>command(−command => sub {$disptype=4;display($currentslice,4);},
 −label => " Show Full formulae...",
 −underline => 0);
 $viewmenu−>command(−command => sub {$disptype=5;display($currentslice,5);},
 −label => " Show only the program...",
 −underline => 0);
 $viewmenu−>separator;
 $viewmenu−>command(−command => sub { if ($currentslice>0) {
 $currentslice=$currentslice−1;
 if ($currentpp==0) {
 $currentpp=$codesize;
 }
 $currentpp=$currentpp−1;
 display($currentslice,$disptype);
 }},
 −label => " Go back...",
 −underline => 0);
 $viewmenu−>command(−command => sub { if ($currentslice+1<$maxslice){
 $currentslice=$currentslice+1;
 $currentpp=$currentpp+1;
 if ($currentpp==$codesize) {
 $currentpp=0;
 }
 display($currentslice,$disptype);
 }},
 −label => " Go forward...",
 −underline => 0);

CODE LISTING SetUpViewMenu.pl

116 Case study: GUI implementation

Here is the code for an OpenFile dialog box:

 sub exit_choice {
 exit;
 }

 sub fileDialog {
 my $w = shift;
 my $operation = shift;
 my $types; my $file;
 @types = ([" Code files", ’ .pp’],
 [" Work files", ’ .ppx’],
 [" All files", ’ *’]);
 $file = $w−>getOpenFile(−filetypes => \@types);
 if (defined $file and $file ne ’’) {

 $thisfile = $file;
 }
 }

CODE LISTING FileOpenDialogBox.pl

You can find a copy of this code at

http://www.comp.nus.edu.sg/˜cs3283/ftp/original.pl

It may be run by typing “perl original.pl ”.

http://www.comp.nus.edu.sg/~cs3283/ftp/original.pl

	GUI concepts
	How not to do GUI
	General rules of GUI
	Do's and don'ts

	Types of applications
	Native environments/platforms
	MacOS
	X
	Win32

	Non-native environments/platforms
	Java
	Web browser interfaces
	Thin client systems

	Widget sets
	Summary of topics
	Sample Assignment - design

	Design
	How not to design
	The design process
	Role of designer
	Building blocks of user interfaces
	Tool support, use cases and modelling
	OO technology and design

	GUI specification and design
	A basis for GUI specification and design
	Formal GUI design
	Examples of GUI designs

	3D vizualization specification and design
	A basis for visualization specification and design
	Examples of visualization design

	Summary of topics
	Sample assignment 2 - design/prototype

	GUI application architecture
	Architecture of GUI applications
	Standalone

	Shared file
	Shared database
	Web server applications
	Web server with active scripting
	Web server with Java applet
	Summary of topics

	First steps in GUI programming
	How not to do GUI programming
	Direct calls to the X API
	Direct calls to the Win32 API

	OO GUI toolkits
	Event handling
	GTK+ and glade
	MFC
	Java/Swing

	Web interfaces
	Scripting languages
	Summary of topics

	Scripting language - Tcl/Tk
	How not to use scripting languages
	Tcl/Tk
	The structure of Tcl/Tk
	Tcl/Tk example software
	C/Tk

	Summary of topics

	Introduction to Java/Swing
	How not to use Swing
	Getting started
	Swing programming
	Pluggable look and feel

	Example application
	Example applet
	Using the netbeans IDE
	Summary of topics

	Java continued ...
	Layout management
	BorderLayout
	BoxLayout
	CardLayout

	Creating menus
	Threads in Swing
	Creating threads
	Event dispatching thread

	Handling events
	Event handlers
	Handling events

	Summary of topics

	Web interfaces
	CGI - Common Gateway Interface
	CGI environment variables
	CGI forms

	PHP
	Java enhanced
	Summary of topics
	Assignment 4 - Implementation

	Visualization
	The use of 3D
	OpenGL
	Java 3D, VTK - toolkits for 3D
	Case study - network traffic application
	Node representation
	Traffic and protocol representation
	Trend representation
	Display

	3D VRML visualization implementation
	3DVNT VRML software

	Summary of topics

	MFC
	MFC menus
	MFC Programming
	MFC class hierarchy
	Summary of topics

	Extra notes on Tcl/Tk
	Tcl/Tk menus
	The Tk canvas
	Assignment 3 - Implementation

	Case study: GUI implementation
	Perl/Tk code

