
1 Introduction

User interfaces can be very complex. The user interface in a modern nuclear power
plant in the U.S.A., for example, might include hundreds of illuminated indicators,
digital and analog gauges, strip-chart paper displays, switches, rotary controls, and so
on. Such systems usually require several human operators to maintain proper control.

In many applications, computer-based control systems are replacing systems
based on older technology to increase flexibility, speed up operation, and enhance
functionality. Modern user interfaces in these new systems offer significant benefits
over their electromechanical counterparts. These benefits include the use of new
devices such as voice input, the provision of new display concepts such as three-
dimensional visualization, and new analysis capabilities such as filtered and time-his-
tory presentation of signals [12].

These new user-interface capabilities bring with them a variety of challenges
including proper ergonomic design and reliable software implementation. These chal-
lenges have to be addressed in order to develop safe systems [16] because the user
interface is a safety-critical element of a control system. If a display contains an error,
such as incorrect data or mislabeling of an object, an accident might occur when the
operator acts on this incorrect information. Also, if the interface does not respond to
user actions as the operator expects, the result might also be unsafe. Examples of such
problems have already occurred [17].

An incident reported recently that occurred in a nuclear power plant highlights the
importance of correct and understandable specifications [22]. The overhead annuncia-
tor system in the control room (procured from a major vendor) stopped processing and
sounding messages without any indication of failure. The system failed when the pri-
mary process that sorted the alarm input buffer into a time sequenced output buffer
aborted. Software that displayed the data and actuated the overhead annunciator win-
dows continued to operate and so the system appeared to be operating. Root-cause
investigation revealed that the vendor thought the operating system would force a

Preliminary Evaluation of A Formal Approach
to User Interface Specification

John C. Knight1 and Susan S. Brilliant2

1 University of Virginia, Charlottesville, VA 22903, USA
2 Virginia Commonwealth University, Richmond, VA 23284, USA

Abstract. In this paper we report on a research project in which the user inter-
face for a research nuclear reactor was specified using a combination of formal
notations. The goal of the project was to evaluate the use of a combination of
techniques and to assess their utility in specifying a user interface for a non-triv-
ial safety-critical application. We conclude that the techniques worked well and
scale up easily to the size of the application studied.

restart if any process aborted (it does not), and that a watchdog timer would protect the
system (it does not).

In general, the development of user interfaces is a difficult and important problem.
Because many errors in computer systems can be traced to defects in their specifica-
tions, a critical aspect of user-interface development is the specification of exactly
what the user interface is to do. As safety-critical applications rely more heavily on
increasingly complex user interfaces, the need to specify the user interface precisely
and correctly in such systems becomes essential.

Despite the importance of specification, in practice user interfaces are rarely spec-
ified with any degree of care. Most user interfaces evolve from an initial prototype
implementation derived from an informal and incomplete description provided by
application experts to a final implementation for which there is no specification. This
evolution takes place as a series of iterations in which the implementation is demon-
strated, evaluated by the application experts, and then enhanced.

This is not an ideal situation and we hypothesize two reasons why it has arisen.
The first reason is that the formal specification of a user interface requires a massive
amount of detail if it is to be done properly. For example, to specify precisely the
details of a pull-down menu on a computer screen requires detail such as colors, shape
and appearance, and location as well as all the semantics associated with selecting a
menu item.

The second reason that we hypothesize to explain why user interfaces are rarely
specified carefully is the variety of material that has to be specified. No single formal
specification language has the facilities to describe all that is needed, and very few
have any kind of animation mechanism that would permit application engineers to
check that what is described is what they require.

In two previous papers [3, 7] we have described an early version of an approach to
formal specification of user interfaces that we have developed. In this paper, we
present a preliminary evaluation of the approach based on the development of formal
specifications for the user interfaces of two safety-critical systems: a medical robot and
a nuclear reactor [6]. This latter system is the subject of a case study in which we are
developing a prototype experimental (non-operational) control system for the research
nuclear reactor at the University of Virginia. Examples from this project are used for
illustration in this paper.

The reactor specification was developed informally because its creation drove the
refinement of the techniques described here. The requirements for the user interface
were determined by examination of existing documentation, observation of the current
system in operation, and extensive discussion with reactor operators and staff. Several
reviews of different aspects of the specification have been held, and the user interface
has been connected to a high-fidelity reactor simulator for user evaluation. All of these
activities were informal and in no way validate the specification. Evaluation is ongo-
ing.

The specification approach that we are using employs three existing formal nota-
tions in an integrated framework—no new notations are involved. Our goals with the
project that we describe are twofold. The first is to determine the capabilities that can
be achieved and determine the difficulties raised by integrating more than one formal

notations. The second goal is to evaluate the utility of the notations themselves in spec-
ifying the user interface for a non-trivial safety-critical application. In other words,
how well do these techniques scale-up?

We begin with an overview of the reactor application, and we follow this with a
summary of the current version of the approach to specification that we have used. We
then present examples of the specification taken from the reactor case study. These
examples are followed by details of our evaluation criteria and our current evaluation
results. Finally, we present our conclusions.

2 University Of Virginia Reactor

The case study application providing most of the information for the evaluation of the
specification technique is the University of Virginia Reactor (UVAR). This is a
research reactor that is used for the training of nuclear engineering students, service
work in the areas of neutron activation analysis and radioisotope generation, neutron
radiography, radiation damage studies, and other research [23]. As part of a research
program in software engineering, a digital control system is being developed for the
UVAR and is currently in the specification stage.1

The UVAR is a “swimming pool” reactor, i.e., the reactor core is submerged in a
very large tank of water. The water is used for cooling, shielding, and neutron modera-
tion. The core uses Low Enriched Uranium (LEU) fuel elements and is located under
approximately 22 feet of water on an 8x8 grid-plate that is suspended from the top of
the reactor pool. The reactor core is made up of a variable number of fuel elements and
in-core experiments, and always includes four control rod elements. Three of these
control rods provide gross control and safety. They are coupled magnetically to their
drive mechanisms, and they drop into the core by gravity if power fails or a safety
shutdown signal (known as a “scram”) is generated either by the operator or the reactor
protection system. The fourth rod is a regulating rod that is fixed to a drive mechanism
and is therefore non-scramable. The regulating rod is moved automatically by the
drive mechanism to maintain fine control of the power level to compensate for small
changes in reactivity associated with normal operations [23].

The heat capacity of the pool is sufficient for steady-state operation at 200 kW
with natural convection cooling. When the reactor is operated above 200 kW, the water
in the pool is drawn down through the core by a pump via a header located beneath the
grid-plate to a heat exchanger that transfers the heat generated in the water to a second-
ary system. A cooling tower located on the roof of the facility exhausts the heat and the
cooled primary water is returned to the pool. The overall organization of the system is
shown in Fig. 1.

The existing reactor control system, shown in Fig. 2, is comprised primarily of
analog instrumentation that is used by the reactor operators to monitor and regulate
operating parameters over all ranges of operation, from start-up to full power. A first-
generation of the digital control system will replicate the functionality of the existing
control console. The majority of that functionality is the display of process variables

1. At present there is no intention of putting the digital control system into operation.

including gross output, neutron flux and period, temperature difference between water
entering the core and water leaving the core, control and regulating rod positions, pri-
mary system flow, and pool water level. The control console also provides facilities for
operator input to the reactor system, including control of the regulating and control
rods, a means to test instrumentation, and responses to unsafe conditions.

3 Specification Approach

A user interface is a complex entity; specifying such an entity is correspondingly com-
plex. The interface is far more than the graphics, the operator commands, or even these
two combined. Informally, the items that have to be defined if a specification is to be in
any sense complete include everything that is presented to the operator, everything that
the operator can do to the interface, everything that it would be erroneous for the oper-
ator to do together with the actions that are required in each case, and the exact mean-
ing of each input that the operator can enter. In a comprehensive approach to user-
interface specification, all of the these aspects need to be addressed, and the specifica-
tion technique(s) used must deal with each aspect completely and consistently.

Formal specification of user interfaces is not new. Various texts [5, 10] and sur-
veys [2] have been prepared, and many research contributions published. Some of the

Fig. 1. The University of Virginia reactor system.

Control
Console

Cooling
Tower

Pool

Experiments

Sensor Data

Safety Rods Regulator Rod

Pump

Header

Heat
Exchanger

Reactor Core

Actuator
Commands

existing work has been focused on problems such as specifying the graphical element
of a user interface [1] or the details of the valid interactions [15, 20]. Other work has
been concerned more with the tools needed to develop interfaces rapidly and accu-
rately [18]. Such tools can be thought of as application generators controlled by formal
notations. An advantage of the use of such tools is that they permit exploration of ergo-
nomic issues associated with user interfaces.

Our concern with the work described in this paper is with the precise specification
of all aspects of the user interface for safety-critical systems. We are seeking specifica-
tion with the greatest possible accuracy rather than rapid or flexible generation, and we
are interested in a rather specialized area of application rather than general applicabil-
ity. We also assume that ergonomic analysis is performed separately. In other words,
we expect that ergonomic analysis will be undertaken at appropriate points by appro-
priate experts and that our task is to specify and analyse the resulting requirements.

It could be argued that errors in the user interface of a safety-critical system, such
as a nuclear reactor, are not themselves especially important because a protection sys-
tems is present (in principle) in the control system. A defective or omitted command
should not lead to a hazard because the protection system will intervene. Although this
will often be the case, protection systems usually only guard against the most cata-
strophic of situations and plenty of damage can be done within the range of operations
accepted by the protection system—and protection systems do not always work. The
position taken in the work described here is that the user interface should be viewed as

Fig. 2. Primary part of the existing main control console of University of Virginia reactor.

a critical element of the system and not impose an additional safety burden on other
elements of the system.

The specification approach we use builds on a view of the user interface intro-
duced by Foley in 1974 [9]. This view models the interface as a dialog between the
operator and the computer system carried out in a fixed interaction language. The
specification problem is to define this language completely and accurately. In practice,
the dialog cannot be defined just in terms of the inputs to be received from the operator
since responses from the computer system change the state of the user interface and
thereby change the operator inputs that are valid.

Defining the interaction language using just one of the available formal specifica-
tion notations is certainly possible but extremely difficult. It requires, for example, that
a graphic screen be modelled using a mechanism such as a sequence of pixels if
another notation, such as a picture is not to be used. Our approach, therefore, uses sev-
eral different formal languages—each one suited to the part of the specification for
which it is used.

3.1 Structure of the Specification
In practice, the dialog between the operator and the computer system takes place in a
set of languages—in effect, the operator is engaged in a set of sub-dialogs going on in
parallel. In the alarm system for the UVAR, for example, an alarm can be signalled and
possibly dealt with by the operator whilst he or she is adjusting control rod heights for
a separate purpose. There are in effect two separate sub-dialogs going on in that case
which take place in two separate if somewhat simple interaction languages. These lan-
guages are not entirely separate, however. In many circumstances, actions taken in one
sub-dialog can affect the possible actions in another. In the UVAR alarm system, for
example, a scram alarm forces the reactor to be shut down thereby limiting the possi-
ble actions in most other sub-dialogs.

In our specification approach, each member of the set of languages required for
the sub-dialogs is defined separately. The overall structure of each specification uses
the three levels employed traditionally to describe formal languages: lexical, syntactic,
and semantic levels.

Each of these three levels is specified separately. Since different notations are
used, a remaining issue is how the communication between these levels is defined. To
provide this communication, we adopt abstract interfaces between the three specifica-
tion levels, and also between the user interface specification and the application soft-
ware specification. The role of the user interface is to accept and check user
commands, and to update the material presented to the operator. The actual system
functionality is implemented in the application software and that is assumed to be
specified separately. However, it is essential that the interaction between the user inter-
face and the application be defined. The overall structure of the specification, includ-
ing the communication paths between specification levels and communication with the
application itself, is shown in Fig. 3.

The interface between the lexical and the syntactic levels is the same as that used
in the formal definition of other languages—the lexical level defines a set of tokens,
possibly including parameters, that are input to the syntactic level. Communication

from the application to the user interface is also accomplished using tokens thereby
enabling state changes in the application to effect the necessary changes to the valid
input sequences of the sub-dialogs.

The application also generates a token to communicate a change in state that may
need to be reflected in the user interface. Any changes that are required in the material
presented to the user are recognized by the syntax level and invoked by the semantic
level. These changes are specified by a set of messages that are generated by the
semantic level and received and effected by the presentation interpreter (see Fig. 3).

The interface between the syntactic level and the semantic level is borrowed from
syntax-directed compiler technology. We specify the context-free syntax using BNF
and each production in the specification is associated with a (possibly null) semantic
action specified in Z so that for each production an appropriate action is specified. The
semantic level communicates with the application by messages that are transmitted to
the application after the recognition of valid sequences of user actions that require a
response from the application.

We summarize the details of our use of formal notations and how the inter-level
communication is defined in the following sections.

3.2 Lexical Level
The lexical level defines exactly how the user interface effects its dialogue, i.e., what
instruments and controls the user sees and employs to control the system [8]. Part of
the lexical level corresponds to the graphical items seen by the user on a computer
screen. In our reactor example, precisely how the presence of an alarm is signalled to
the operator—colored light, flashing light, bell, horn, voice, or a combination of
these—is a lexical issue.

A number of formal notations for specifying the lexical level of the user interface

Fig. 3. User interface specification structure.

Syntax
Definition

Lexical
Definition

U
se

r
A

cc
es

si
bl

e
D

ev
ic

es Present’n
Interpreter

Commands

Application
Specification

Tokens

User
Actions

Productions

Semantic
Definition

have been proposed [1, 11, 14]. No matter what the notation, however, the specifica-
tion of the lexical level is extremely complex. The source of the complexity lies in the
sophistication of the available input and output devices. For example, in specifying a
graphic user interface, all of the objects that are to appear on the screen must be
described in complete detail. Some idea of the difficulty that this entails can be seen by
considering the semantics of something as simple as a screen menu item. It is essential
that the actions of the menu item be completely defined for all possible user actions
including the following: depressing any mouse button over the item; releasing any
mouse button over the item; releasing the mouse button over the item having depressed
it elsewhere; typing text with the focus over a menu item; and so on.

Rather than define an entire lexical specification using one of the existing nota-
tions for the graphic element of our specification approach, we have chosen to adopt a
complete existing lexical specification framework and tailor it to our needs. The
framework we employ is Borland’s Object Windows Library (OWL). This framework
is defined using C++ classes and provides predefined specifications for all common
graphic elements including command buttons, menus, bit-mapped graphics, and so on.
OWL allows easy description of a graphic interface by inheriting from classes of
graphic entities.

Of great importance is the fact that the OWL documentation defines the base
classes used in the specification precisely and hence provides the exact meaning of
actions that manipulate those graphical objects (such as those involving the effect of
pressing mouse buttons over a menu item mentioned above). In essence what we are
doing is reusing an existing set of specifications and accepting whatever definitions
they include. This is a very satisfactory trade-off, and there are a number of similar
frameworks that could be used with similar results, e.g. TurboVision, Delphi, or Visual
Age. The graphic component of a user interface specified with our approach consists
of a simple C++ program that utilizes the library classes to define graphic objects.
However, this relatively simple specification is accompanied by the library documen-
tation and hence provides a complete specification of a complicated aspect of the inter-
face. Any doubt that remains after the documentation is consulted can be resolved by
regarding the C++ program as an operational definition.

3.3 Syntactic Level
The syntax of the human-computer dialogue defines valid sequences of user input and
computer output. The “dialogue” as we have noted is actually several sub-dialogues
that proceed concurrently and that are interleaved arbitrarily. The syntactic level in our
specification approach is documented with a set of context-free grammars with one
grammar for each of the concurrent, asynchronous dialogues that might be taking
place.

The tokens that are input to each context-free grammar can be generated by three
sources:
• The lexical level.

The user interface generates tokens in response to user manipulation of the inter-
face.

• The application program.
Tokens arriving from the application program are the mechanism by which the
application communicates with the user interface.

• One of the other grammars in the set.
This is the mechanism by which communication is achieved between the different
languages that effect the sub-dialogs.

The concept of a multi-party grammar described by Shneiderman [21] is appropri-
ate for representing grammars in which tokens are generated by more than one source.
However, we have elected to use a conventional context-free grammar representation
together with a naming convention to distinguish sources of tokens. The primary
advantage of using conventional grammars is the ready availability of tools that pro-
vide automatic generation of syntax analyzers from the grammars. If one of these tools
is used, the implementation is guaranteed to implement the specification if the tool is
working correctly, and so verification of the translation is simplified.

3.4 Semantic Level
In our specifications, we use Z [4, 13, 19] to define the user-interface context-sensitive
syntax (i.e., the rules of syntax that are dependent on context) and the semantics. Z
provides all the necessary mechanisms to define the various operations that are
effected by the operator.

It is important to keep in mind that the semantics to which we refer are just the
semantics of the set of interaction languages. Once a command is deemed valid, its
“meaning” in almost all cases is merely to send a message requesting some operation
either to the application software itself or to the presentation interpreter. Thus impor-
tant functional semantics, the reactor safety rules for example, are defined in the appli-
cation specification.

4 An Example

Many aspects of the reactor control system user interface are straightforward. We
focus here on one of the more complex subsystems in order to illustrate the division of
labor and communication among the layers of the specification of the computerized
control system. The subsystem we use is the safety control rod system.

Recall that the three safety control rods (also called shim rods) provide gross con-
trol of reactivity and are one element of the safety system. For each of these control
rods, the present operator’s console includes a set of four lights:
• Engaged.

This light indicates whether the rod is magnetically coupled to its drive mecha-
nism.

• Up.
This light indicates whether the rod is fully withdrawn.

• Down.
This light indicates whether the drive mechanism is at its lowest level.

• Seated.
This light indicates whether the rod is fully inserted into the core, regardless of the
position of the drive mechanism.

For each control rod, there are also displays indicating the rod height and the mag-
netic current to the rod attachment mechanism. To allow operator control of each rod,
there are controls allowing the operator to set the magnet current and to raise and lower
the rod. The operator can either move the rod by a small increment or move the rod
continuously at a predetermined speed. The standard operating procedures in the cur-
rent manual system allow the operator (a) to move the rods only when the neutron flux
measurement exceeds a prescribed threshold (thereby indicating that the instrument is
operating), and (b) to move two control rods simultaneously only if all three rods are
raised less than 10 inches from their seated positions. These restrictions will be
enforced by the software control system.

Fig. 4 shows the small portion of the screen that results from executing the OWL
lexical specification of the interface for the control rods, and Fig. 5 shows part of that
specification. At this level the screen objects associated with the display of control-
rod-related data are specified. For example, the rod heights are displayed in a digital
format and are also shown graphically in an analog-style display for operator conve-
nience. Either one of these could be used alone. An “up” and a “down” button are sup-
plied for controlling the movements of each rod. Pressing and quickly releasing a
button provides the incremental move action; holding the button down moves the rod
continuously until the button is released. Another approach might have used a dialog
box in which the direction of movement could be chosen, and then separate buttons
might be provided to move incrementally, or start and stop the movement.

Recall that the communication from the lexical level to the syntactic level uses
tokens. For example, the action of depressing the left mouse key over the “up” button
for a particular safety rod generates the token LEXStartRod with parameters indicating
which safety rod button has been pressed and that the “up” action has been selected.

Fig. 4. Rod controls provided by new digital system. This is just a small part of the user inter-
face.

The prefix LEX on the token is used to indicate that the lexical level is the source for
this particular token. The parts of the control rod syntactic and semantic specification
related to this action are shown in Fig. 6.

Production 11 immediately preceding the Z schema StartRod will be applied when
the LEXStartRod token is generated in response to the user action described above.
The StartRod schema gives the semantic action associated with the application of this
production. The precondition:

(WhichWay? = Up÷Which? • RodUp)ˆ(WhichWay? = Down ÷Which? • RodDown)

reflects the fact that the control rod can move up only if it is not already all the way up,
and down only if it is not already down. If the precondition is satisfied, the output Msg-
ToAP!, a message to the application, will send the operation code APStartRod with
parameters to indicate that Which? is the control rod to be moved in the direction
WhichWay?.

The syntactic level imposes the required temporal ordering on user actions and
system responses. For example, the context in which the LEXStartRod token can be
recognized within the grammar enforces an ordering on the user actions in the usual
sense associated with a context free grammar.

In response to the message with the APStartRod operation code, the application
will cause the indicated control rod to begin moving in the indicated direction. As the
control rod moves, its new position will be communicated periodically to the user
interface through the generation of a token by the application. This token is read by a

Fig. 5. Lexical specification fragment.

ControlRod::ControlRod
(TWindow* parent, int Id, float current, int X,
 int Y, int W, int H)
: TWindow(parent, 0, 0)

{
up_button = new ControlButton

(this, IDC_BUTTON_UP,
"up", BUTTON_LEFT,
UP_BUTTON_TOP, BUTTON_WIDTH,
BUTTON_HEIGHT);

top_light = new Light
(LIGHT_LEFT TOP_LIGHT_TOP,
TOP_LIGHT_RIGHT, TOP_LIGHT_BOTTOM,
"TOP", TFont("Arial", FONT_SIZE),
TColor::LtGray, TColor::LtBlue);

CurrentControl = new TVSlider
(this, IDC_SLIDER_CURRENT,
CURRENT_CONTROL_LEFT, CURRENT_CONTROL_TOP,
CURRENT_CONTROL_WIDTH, CURRENT_CONTROL_HEIGHT);}

separate, concurrent grammar. The relevant part of this grammar and the associated
semantic specification are shown in Fig. 7. The fact that this grammar fragment is part
of a separate grammar from that used for control-rod movement allows the application
to update the rod-height display any number of times between the user activities corre-
sponding to the <start_rod_move> and <stop_rod_move> nonterminals that must
occur contiguously in the grammar in Fig. 6.

The response to the recognition of the APRodHeight token is the generation of a
message to the presentation interpreter. This message directs that the appropriate rod
height be displayed. The rod heights are also stored in a state variable, Heights, so that
the standard operating procedure restriction on raising two rods simultaneously can be
enforced. The specification of the allowable movement of two rods is shown in Fig. 8.
The precondition in the first schema specifies that the action specified in the schema
can be taken only when all of the rods are below the height threshold. The second
schema defines an attempt to violate the standard operating procedure as an operator
error.

Fig. 6. Part of the specification associated with moving a control rod.

(1) <control_rod_seq> ::= <rod_enable> <rod_move>

(2) <rod_enable> ::= <rod_engage> <instrument_check> |
(3) <instrument_check> <rod_engage>

(4) <rod_engage> ::= RodG2RodsEngaged

(5) <instrument_check> ::= ReactorG1InstrumentCheck

(6) <rod_move> ::= <move_1_rod_or_2>+

(7) <move_1_rod_or_2> ::= <move_1_rod> |
(8) <move_2_rods>

(9) <move_1_rod> ::= <incremental_move> |
(10) <start_rod_move> <stop_rod_move>

(11) <start_rod_move> ::= LEXStartRod (Which?, WhichWay?)

¯RodControl
Which? : Rod
WhichWay? : Direction
MsgToAP! : APRodMsg

(WhichWay? = Up ÷ Which? • RodUp) ˆ (WhichWay? = Down ÷ Which? • RodDown)
MsgToAP! = (APStartRod, Which?, WhichWay?)

StartRod

5 Evaluation of the Approach

Our goal with this work is to develop an approach to user interface specification that
has all the well-known benefits of formal specification and can be applied effectively
to realistic safety-critical systems. To evaluate the utility of the approach in as thor-
ough a manner as possible, we have used a simple set of evaluation criteria.

Our evaluation framework involves assessment in the following areas: expressiv-
ity, usability, changeability, implementability, analyzability, verifiability, and accuracy.
Naturally, good performance in these areas of concern were objectives when the speci-
fication approach was originally formulated and during its subsequent development—
that is in part why formal notations are used.

Of particular concern to us in this evaluation was to assess the impact of using
three quite dissimilar formal mechanisms in one specification technique. From the out-
set it became clear that using three separate notations to specify the three major aspects
of the interface provides complete separation of concerns between the levels, i.e., por-
tions of the user interface that address different concerns are specified in distinct
pieces. This very rigid separation of concerns has yielded numerous advantages that
are discussed below.

Now that we have some experience with the approach, we are in a position to see

Fig. 7. Part of the specification associated with displaying control rod information.

(1) <display_rod_data> ::= <display_rod_item>+

(2) <display_rod_item> ::= <display_mag_engaged> |
(3) <display_rod_up> |
(4) <display_rod_down> |
(5) <display_rod_seated> |
(6) <display_not_engaged> |
(7) <display_not_up> |
(8) <display_not_down> |
(9) <display_not_seated> |
(10) <display_rod_height>

(11) <display_rod_height>::= APRodHeight (Which?, Height?)

DisplayRodHeight

ƒRodControl
Which? : Rod
Height? : —
MsgToPI! : PIRodMsg

Heights’ (Which?) = Height?
MsgToPI! = (PIDisplayRodHeight, Which?, Height?)

how well the objectives are being met, and in this section, we examine each of these
areas in turn. Our evaluation is mostly subjective and limited to our experience with
two systems.

5.1 Expressivity
We have found the three notations we used to be entirely adequate to express the vari-
ous user interface requirements. The notations matched the needs of the various levels
very well and were quite simple to use. Once all three levels had been specified we ini-
tially had some difficulty documenting the interfaces between the levels. For example,
the tokens defined by the lexical level appear in the syntactic specification but not in a
focused manner making understanding the interface a little difficult. This has been
resolved by tabulating the token list and using cross references to the two levels.

Fig. 8. Part of the specification of multiple rod movement.

(1) <start_rod_moves> ::= LEXStartRod(Which1?, Which2?, WhichWay?)

StartRods

¯RodControl
Which1?, Which2? : Rod
WhichWay? : Direction
MsgToAP1!, MsgToAP2 : APRodMsg

¡r : Rod | Heights(r) < HeightThreshold
(WhichWay? = Up ÷ Which1? • RodUp) ˆ

(WhichWay? = Down ÷ Which1? • RodDown) Æ
MsgToAP1! = (APStartRod, Which1?, WhichWay?)

(WhichWay? = Up ÷ Which2? • RodUp) ˆ
(WhichWay? = Down ÷ Which2? • RodDown) Æ
MsgToAP2! = (APStartRod, Which2?, WhichWay?)

StartRodsError

¯RodControl
Which1?, Which2? : Rod
WhichWay? : Direction
MsgToAP! : APErrMsg

·(¡r : Rod | Heights(r) < HeightThreshold)
MsgToAP! = APStartRodError

5.2 Usability
The separation of concerns mentioned above has proved to be a major benefit in the
area of usability. It facilitates validation of the interface because it allows the use of the
most appropriate specification vehicle for each level and because each piece of the
specification can be examined separately. Nuclear engineers have been able to follow
semantic specifications in Z quite easily once the notation was explained.

The use of a formal notation that can be executed for the lexical level made part of
the validation fairly simple. A screen mock-up of the graphical part of the user inter-
face was produced by compiling and executing the specification. The executable
mock-up then served as a vehicle for communication with application experts because
it acts as a prototype for the presentation. The lexical level of the reactor control sys-
tem has been reviewed carefully by reactor technicians twice and revised considerably
each time to suit their needs.

5.3 Changeability
The separation of concerns between the specification levels provides flexibility by
allowing multiple specification solutions for a particular level to be developed and pro-
totyped without affecting the remainder of the user interface specification. This flexi-
bility is especially useful in permitting changes in the lexical level, allowing the most
natural and error-resistant presentation to be developed through prototyping and
usability testing, without requiring changes in the rest of the interface specification. In
the reactor specification, for example, the safety rod control system illustrates how the
interfaces between levels of the specification maintain isolation thereby permitting
change. We have changed the lexical specification associated with the controls to
move the control rods without changing the syntactic specification about what rod
movements are legal nor the semantic specification about what rod movement means.
Also, if the requirement to check that the neutron flux registers at or above a threshold
level is dropped, only the syntactic specification must be changed. Finally, if the
restriction on the simultaneous movement of rods is dropped or changed, only the
semantic specification is affected.

Needless to say, the current specification that we are using has evolved and
changed considerably during development and will change in the future. These
changes have been accommodated easily by the specification notations.

5.4 Implementability
The structure of the specifications yielded by this approach maps easily into an imple-
mentation structure that is easy to work with but quite different from that typically
found in user-interface implementations. Most implementations are event-driven and
the majority of the functionality of the user interface (including error checking and
semantic interpretation) is included in the call-back functions associated with the vari-
ous events. This is undesirable since it precludes the adoption of modern design tech-
niques.

The implementation structure associated with this specification approach is, of
course, also event driven but the call-back functions do no more than generate tokens.
The syntax analysis is done by separate syntax analyzers and these are constructed

with the typical syntax-directed-translation structure in which semantic actions are tied
to specific productions. This implementation structure matches the specification struc-
ture exactly.

The lexical specification is immediately executable since it is written in C++. The
syntactic specification can be implemented automatically using a parser generator and
so requires no human implementation effort. The semantic specification is written in Z
and maps fairly easily into an implementation in a procedural language like C++.

A complete implementation of the user interface and the associated control system
have been developed although they are viewed as prototypes only at this point. The
entire system operates in conjunction with the reactor simulator mentioned earlier and
provides a valuable environment for discussion with users.

5.5 Analyzability
Many analyses of a specification using the approach we describe have been performed
and others are possible. Clearly, various type rules and other rules of syntax are
checked for the lexical specification by a C++ compiler. The use of a parser generator
for implementing the syntactic specification also ensures a variety of checks on the
grammars that are in the specification. Finally, all the tools that are available for ana-
lyzing Z could be applied to the semantic specification although this has not yet been
done.

As well as the above, several analyses have been performed on the specification as
a whole to increase confidence in the completeness and consistency of the specifica-
tion. As an example, consider the token set defined by the lexical specification—the
following checks have been performed by hand (but they could easily be automated):
each token is generated by only one operator action; each operator action generates a
token; and all tokens defined in the lexical specification are referenced in the gram-
mars included in the syntactic specification.

The use of synthesized syntax analyzers enables other analyses to be performed.
The generated syntax analyzers can determine from the grammars which tokens are
valid at any given point, and can utilize the information to disable dynamically ele-
ments of the interface that are not valid at any point in time. This process of disabling
parts of the interface is often referred to as “graying out” because it is usually done by
showing text on menus and buttons in grey rather than black. With the necessary infor-
mation obtained automatically from the syntactic specification and implemented
directly from that information, this again provides a part of the implementation that is
guaranteed, thereby eliminating the need for verification. As with the analyses men-
tioned above, at this point this analysis and synthesis has been performed by hand but
could easily be automated.

Finally, we note that rigorous human inspection of the specification is facilitated
by its structure and by the choice of notations used, and such inspections have been
carried out.

5.6 Verifiability
The verification of an implementation derived from a user interface specification using
this approach is simplified considerably by the use of an executable specification for

the lexical level and by the use of a notation from which an implementation can be
synthesized for the syntactic level. In both cases, verification is immediate provided
the parser generators and compilers involved can be trusted (this is a separate issue that
we will not discuss here).

The remaining verification issue is the verification of the semantic specification.
Since this is written in Z, at least there is hope that a formal or at least a rigorous
approach to verification can be undertaken. In particular, all of the tools and techniques
developed for Z can be applied.

5.7 Accuracy
A significant area in which we have no results at present is the accuracy of the specifi-
cation that we are building. If the formal notations and the specification structure are to
be of real value, they have to contribute to a reduced rate of specification errors. Infor-
mally, we have observed that the approach we are following has yielded many ques-
tions about the interface requirements and thereby has almost certainly improved their
quality.

6 Conclusions

Our experience to-date with the specification approach that we have described is very
positive. The development of all three layers of the specification has been relatively
straightforward, and many benefits have accrued from the formalism.

As we have noted, no new notations or novel application of existing notations are
being reported here. The issues of interest were the integration of techniques and their
scalability. We are confident as a result of this work that the three notations that we
have used can be integrated effectively and the resulting structure can be applied to a
non-trivial safety-critical system.

7 Acknowledgments

Matt Elder was heavily involved in the initial stages of this research and his contribu-
tion is gratefully acknowledged. It is a pleasure to acknowledge many helpful discus-
sions about the user interface requirements for UVAR with a variety of our colleagues
including Tom Doyle, Bo Hosticka, Don Krause, and Bob Mulder. We are also very
grateful to Charles Odell and Meng Yin for their assistance in developing the lexical
specification. This work was supported in part by the National Science Foundation
under grant number CCR-9213427, and in part by NASA under grant number NAG1-
1123-FDP.

References

1. Abowd, G., Dix, A.: Integrating status and event phenomena in formal specifications of
interactive systems, Proc. FSE 2: Second ACM Sigsoft Symposium on Foundations of
Software Engineering, New Orleans, LA (1994).

2. Abowd, G., et al, User interface languages: a survey of existing methods, Technical Report
PRG-TR-5-89, Oxford University Computing Laboratory (1989).

3. Brilliant, S., Knight, J., Elder, M.: Formal specification of a user interface, American

Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Control,
and Human Machine Interface Technologies, University Park, PA (1996)

4. Diller, A.: Z: An Introduction to Formal Methods, John Wiley and Sons, Inc., New York
(1990).

5. Dix, A.: Formal Methods for Interactive Systems, Academic Press (1991).
6. Elder, M.: Specification of User Interfaces for Safety-Critical Systems, Technical report

CS-95-30, Department of Computer Science, University of Virginia (1995).
7. Elder, M., Knight, J.: Specifying user interfaces for safety-critical medical systems, Pro-

ceedings, MRCAS ‘95, 1995 International Symposium on Medical Robotics and Com-
puter Assisted Surgery, Baltimore, MD (1995).

8. Foley, J., Van Dam, A.: Fundamentals of Interactive Computer Graphics, pp. 217-242,
Addison-Wesley Inc., New York (1982).

9. Foley, J., Wallace, V.: The art of natural graphic man-machine conversation, Proceedings
of the IEEE, 62, 4, pp. 462-471 (1974).

10. Harrison, M., Thimbleby, H.: Formal Methods in Human-Computer Interaction, Cam-
bridge University Press (1990).

11. Hartson, H., Siochi, A., Hix, A.: The UAN: A user-oriented representation for direct
manipulation interface designs, ACM Transactions on Information Systems, 8, 3, pp. 181-
203 (1990).

12. Hix, D., Hartson R: Developing User Interfaces: Ensuring Usability Through Product and
Process, John Wiley and Sons, Inc., New York (1993).

13. Ince, D.: An Introduction to Discrete Mathematics and Formal System Specification, Clar-
endon Press (1988).

14. Jacob, R.: A specification language for direct-manipulation user interfaces, ACM Transac-
tions on Graphics, 5, 4, pp. 283-317 (1986).

15. Jacob, R.: Using formal specifications in the design of a human-computer interface,
CACM 26, 4, pp. 259-264 (1983).

16. Leveson, N.: Software safety: why, what, and how, Computing Surveys, 18, 2, pp. 125-163
(1986).

17. Leveson, N., Turner, C.: An investigation of the Therac 25 accidents, IEEE Computer, 26,
7, pp. 18-41 (1993).

18. Myers, B. et al, Garnet: Comprehensive support for graphical, highly interactive user
interfaces, IEEE Computer, 23, 11, pp. 71-85 (1990).

19. Potter, B., et al.: An Introduction to Formal Specification and Z, Prentice Hall, Inc., New
Jersey (1991).

20. Reisner, P.: Formal grammar and human factors design of an interactive graphics system,
IEEE Trans. on Software Engineering, SE-7, 2, pp. 229-240 (1981).

21. Shneiderman, B.: Multiparty grammars and related features for defining interactive sys-
tems,” IEEE Transactions on Systems, Man, and Cybernetics, 12, 2, pp. 148-154 (1982).

22. Waite, C.: electronic mail posted to safety-critical newsgroup (1996).
23. University of Virginia Reactor, The University of Virginia Nuclear Reactor Facility Tour

Information Booklet, http://minerva.acc.virginia.edu/~reactor.

