
NATIONAL UNIVERSITY OF SINGAPORE

SCHOOL OF COMPUTING
EXAMINATION FOR

SEMESTER 2 2010/2011

CS 4215 - PROGRAMMING LANGUAGE IMPLEMENTATION

April 2011 Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

This question booklet has 18 pages, including this cover page, and contains 9 questions.
Answer all questions. This is an open book examination. Any written and printed
material may be used during the examination, but no electronic devices are allowed to
remain switched on.

Please enter your matriculation number here:

Do not write below this line

Q# 1 2 3 4 5 6 7 8 9 Σ

Max 8 4 12 12 7 12 6 8 6 75

Sc

CS 4215 2

Question 1: (8 marks) In the labs of the module, we implemented the language cPL

• by writing in Java a compiler from cPL to cVML, and

• by writing in Java a virtual machine that can execute cVML programs.

Assume that you have an x86 computer, a Java Virtual Machine written in x86 code,
and a Java compiler written in x86 code, which produces Java Virtual Machine code.
Draw the T-diagrams for all four language processing steps required to execute some
cPL program, called bank-account.cpl.

CS 4215 3

Question 2: (4 marks) Recall that the language imPL added assignments to the
language simPL (among other constructs).

E

x := E

Here, x denotes a variable that needs to be declared elsewhere and E denotes an expres-
sion in imPL. Recall that we decided that the result of evaluating such an assignment
is the result of evaluating E.
Let us say that we want to design a type system for imPL. Complete the following
typing rule that defines the well-typedness of assignments with respect to a given type
environment Γ, by adding conditions above the bar.

Γ ` E : t Γ(x) = t

Γ ` x := E : t

[AssmtT]

CS 4215 4

Question 3: (12 marks) Let us assume we want to add arrays of integers to the
language imPL and its virtual machine iVM. In order to do so, we add the following
constructs:

E

newarray E

E1 E2

E1 [E2]

E1 E2 E3

E1 [E2] := E3

Here, newarray is a new keyword in the language. The array indices in an array created
by newarray E range from 0 to v − 1, where v is the integer to which E evaluates.
Initially, all array values are 0. Here is an example program:

let high = 7

in

let a = newarray (high + 2)

in

a[3+2] := 6;

a[1+5] := 8;

a[5] + a[2*3] + a[7]

end

end

This example program should evaluate to 14.
In order to implement these new constructs in iVM, we add instructions NEWARRAY,
ARRAYACCESS, and ARRAYASSIGN using the following compiler rules:

E ↪→ s

newarray E ↪→ s.NEWARRAY

E1 ↪→ s1 E2 ↪→ s2

E1 [E2] ↪→ s1.s2.ARRAYACCESS

E1 ↪→ s1 E2 ↪→ s2 E3 ↪→ s3

E1 [E2] := E3 ↪→ s1.s2.s3.ARRAYASSIGN

Complete the following virtual machine code interpretation for these instructions, using
Java. In case you need new classes, please use page 6.
You can make use of the current operand stack using the variable os, the current
environment using the variable pc, the current environment using the variable e, and
the current runtime stack using the variable rts, is the program counter of the virtual
machine.
You may assume that there are no type errors; the expressions E1 above always evaluate
to arrays, and the expressions E,E2, E3 above always evaluate to integers. If an array
access or assignment encounters an index that lies outside the array range, iVM should
terminate with an error message.

CS 4215 5

case OPCODES.NEWARRAY:

{

IntValue size = (IntValue) os.pop(); // pop size int fr op stack

ArrayValue a = new Array(size.value); // unbox integer

os.push(a); // push array on op stack

pc++; // increment program counter

break; // get out of switch stmt

}

case OPCODES.ARRAYACCESS:

{

IntValue index = (IntValue) os.pop(); // pop index fr op stack

ArrayValue a = (ArrayValue) os.pop(); // pop array fr op stack

IntValue v = new IntValue(a.get(index.value)); // access array

os.push(v); // push value on op stack

pc++; // increment program counter

break; // get out of switch stmt

}

case OPCODES.ARRAYASSIGN:

{

IntValue v = (IntValue) os.pop(); // pop new val fr op stack

IntValue index = (IntValue) os.pop(); // pop index fr op stack

ArrayValue a = (ArrayValue) os.pop(); // pop array fr op stack

a.put(index.value,v); // array assignment

os.push(v); // push value on op stack

pc++; // increment program counter

break; // get out of switch stmt

}

CS 4215 6

(for helper classes)

class ArrayValue {

int[] a;

ArrayValue(int size) {

a = new int[size];

}

int get(int index) {

return a[index];

}

int put(int index, int val) {

a[index] = val;

}

}

CS 4215 7

Question 4: (12 marks) In the following, you are asked to write programs in the
virtual machine code SVM. You are free to use any sequence of sVML instructions in
any order. To indicate jump addresses, you may label instructions as in the following
example.

0: LDCI 1

1: LDCI 2

2: GOTO 4

3: PLUS

4: TIMES

A stack underflow is an attempt to remove or access the top element of an empty stack.
In practice, all stacks have finite maximum size, say s. A stack overflow is an attempt
to push an element on a stack that already holds s elements.

(A) (3 marks) Write an sVML program that will lead to an operand stack overflow,
regardless of the size of the operand stack.

0: LDCI 0

1: GOTO 0

(B) (3 marks) Write an sVML program that will lead to an operand stack underflow.

0: PLUS

CS 4215 8

(C) (3 marks) Write an sVML program that will lead to a runtime stack overflow,
regardless of the size of the runtime stack.

0: LDF 0

1: LDCI 0

2: CALL 1

(D) (3 marks) Write an sVML program that will lead to a runtime stack underflow.

0: RTN

CS 4215 9

Question 5: (7 marks) Let us add to the instruction set sVML an instruction GOTOD,
whose execution is defined as follows:

s(pc) = GOTOD

(i.os, pc, e, rs) ⇒s (os, pc + i, e, rs)

(A) (2 marks) What will be the result of executing the following SVM program with
this new instruction?

0: LDCI 5

1: LDCI 1

2: LDCI 3

3: GOTOD

4: TIMES

5: DONE

6: PLUS

7: DONE

8: MINUS

9: DONE

Your answer: 6

(B) (5 marks) Translate the following Java program to sVML using GOTOD, and with-
out using JOF, assuming that the variable x is located in the environment at
position 1, the function f is located in at position 2, the function g is located at
position 3 and the function h is located at position 4. Assume that the function
f always returns 0, 1 or 2.

switch (f(x)) {

case 0 : g(10); return;

case 1 : h(20); return;

case 2 : g(30); return;

}

CS 4215 10

0: LD 2

1: LD 1

2: CALL

3: GOTOD

4: GOTO 7

5: GOTO 10

6: GOTO 13

7: LD 3

8: LDCI 10

9: CALL

10: LD 4

11: LDCI 20

12: CALL

13: LD 3

14: LDCI 30

15: CALL

CS 4215 11

Question 6: (12 marks) A major disadvantage of memory management by reference
counting is that unreachable cyclic data structures are not re-used.

(A) (4 marks) In simPL, cyclic data structures are only created by recursive function
definition. Write a simPL expression that will create 1000 nodes on the heap,
none of which will ever be re-used during execution of the compiled version of the
expression, using reference counting.

(recfun f x -> let g = recfun g y -> 0 end in (f x - 1) end end

1000)

CS 4215 12

(B) (6 marks) Recall that in simPL, cyclic data structures are only created by re-
cursive function definition. Sketch a modified version of reference counting for
simPL that uses this fact to achieve re-use of space occupied by recursive function
definitions. Use pseudo-code in your solution. Feel free to suggest modifications
to the virtual machine and/or compiler to make your memory management work;
in that case clearly describe the suggested modifications.

(idea) The closure nodes created by LDRF should be marked as “recur-
sive” using a tag that is different than the tags for regular function
nodes. Then execution of LDRF simply subtracts 1 from the reference
count of the closure and its environment.

CS 4215 13

(C) (2 marks) In the virtual machine implementation of imPL, which we called
imPLvm, it is possible to construct cyclic data structures even without recursive
function definitions. Write an imPL program without recursive function defini-
tions that creates a cyclic data structure in imPLvm.

let x = [A:[]]

in x.A := x

end

CS 4215 14

Question 7: (6 marks) Consider the virtual machine for imPL presented in the lectures.
The CALL instruction is the most complex instruction, since it allocates three new nodes
in the heap; a stack frame, an environment and an operand stack.
You have seen that imPL function calls can sometimes be compiled to an optimized
form, where the allocation of some of these nodes can be avoided. For example, the
optimized instruction TAILCALL avoids the creation of any of these nodes.
Consider the call of g in the following imPL program.

(recfun g x y ->

if x > 0

then x := x - 1; y := y + 1; (g x y) + 2

else 0

end

4 5)

(A) (2 marks)

1. Why can the call of g not be implemented using TAILCALL? (explain in at most
three sentences)

The recursive call for g is not that last operation in the body of g. The
call needs to return to the body of g in order to load the integer 2 and
perform the addition.

(B) (4 marks) Describe an optimization of CALL for the call of g that avoids the
creation of at least one of the mentioned three nodes.

In this particular case, we can reuse the environment; the callee is
going to need x and y, just like the caller. Here is the idea:

case OPCODES.OPTCALL: {

int n = i.NUMBEROFARGUMENTS;

Closure closure

= os.pop(); // function value

rs.push(new StackFrame(pc+1,e,os));

pc = closure.ADDRESS;

os = new Stack();

break;

}

assuming that the recursive call of g is compiled into OPTCALL, avoiding compiling
of the arguments x and y into LD instructions. Students who do not do that
would need to pop two argument values from the operand stack before popping
the closure.

CS 4215 15

Question 8: (8 marks) Object-oriented languages often have a keyword super that
allow the programmer to call methods of inherited classes. In this question, you are
asked to design super for the language oPL. Example:

let c1 =

class

method F(x) -> x + 1 end

end

in

let c2 =

class extends C1

method F(x) -> super.F(x) * 2 end

end

in

(new c2).F(3)

end

A super call, such as super.F(x) in this example, looks for a method with the given
property, here F, in the class that surrounding class extends. It then applies the corre-
sponding function to this and other arguments of the super call. Thus, the program
above will result in the integer 8.

(turn the page)

CS 4215 16

(A) (3 marks) The super class may be different from the parent class of this. Com-
plete the following program by inserting one method in one of the provided spaces
such that the program evaluates to false.

let c1 =

class

method Val() -> 1 end

end

in

let c2 =

class extends c1

method Test() ->

(this.Class.Parent.Val this) = super.Val()

end

method Val() -> 2 end

end

in

let c3 =

class extends c2

end

in

(new c3) . Test()

end

end

end

CS 4215 17

(B) (5 marks) Sketch how such a super construct could be implemented, based on the
oPL interpreter covered in the module. If your implementation requires support
from the parser, then clearly describe this support by saying what data structures
it should generate for the new language construct.

(sketch) The compiler needs to get a hold of the class from which the surrounding
class inherits. This can be done by compiling a class extends E ... end into let

parent = E in [Parent:parent,...] end where ... stands for the methods of the
class, as usual.
Then a call super.F(E1...En) can be compiled to ((lookup parent F) this E1 ...

En).

CS 4215 18

Question 9: (6 marks) Consider the language cPL presented in the lectures. Assume
that there is a built-in function print that displays the value of its parameter. Consider
the following coPL program:

let x = 3

in

thread x := x + x end ;

thread x := x * x end ;

thread print x end

end

Assume that the assignment x := x + x is compiled to

LDCI 1

LD 1

LD 1

PLUS

ASSIGN

and the assignment x := x * x is compiled to

LDCI 1

LD 1

LD 1

TIMES

ASSIGN

List all possible values that can be displayed by this program, using interleaving se-
mantics at the level of virtual machine instructions.

3

6

9

18

36

12

(18 again: 3 * 6)

END OF QUESTIONS

