
CS4215 Programming Language Implementation

Lab task for Week 11

A Virtual Machine for cPL

1. Download the file http://www.comp.nus.edu.sg/~cs4215/labtasks/week11.
zip, and extract it to the Eclipse workspace folder. The workspace folder
should now contain a file cs4215_week_11.

2. In Eclipse, go to “File”, “New”, “Project”, “Java Project”, “Next”, and
choose “cs4215_week_11” as “Project name”. Press “Finish”.

3. Use the “Run Configurations” to run cPLcompiler.cplc with a file name
(for example test.cmpl) as “Program argument”. The file should contain
the instruction to print an integer, say 123:

print 123

The compiler should reply:

cvml code written to test.cvml

Now, you can interpret the compiled program using the virtual machine
by running cPLvm.impl with the base name of the file you just compiled
(in the example test, resulting in 123).

Note that the given virtual machine in VM.java cannot handle exceptions,
threads and wait/signal. Also note that in cPL, every thread, including
the “parent” thread in which the entire program starts, ignores the result
of evaluation of its body expression. Therefore, you need to write “print
123” to see the result in the program above.

It is your task to complete the virtual machine by covering the entire
instruction set given in cVML.

This includes the following:

• Built-in exceptions: Note that the compiler compiles the two builtin
exceptions for division by zero and invalid record property access,
respectively. It then saves the addresses of the two builtin exceptions
in the .cvml file. The virtual machine loads these addresses and
passes them to the run method of cPLvm.VM as arguments

int divisionByZeroAddress,

int invalidRecordAccessAddress

1



Using this knowledge, you should be able to improve the implemen-
tation of the machine instructions DIV and DOT such that the right
actions are taken in all cases.

• Throwing and catching exceptions: Implement the machine instruc-
tions TRY and THROW as described in the notes. Exceptions that are

not caught in the thread in which they were thrown, should lead to

silent termination of the thread without any error message.

• Optimization of ENDTRY: Often, RTN statements immediately follow
ENDTRY instructions. These ENDTRY instructions are omitted by the
cPL compiler. As a result, RTN needs to be prepared to encounter
unnecessary catch frames on the runtime stack.

• Threads: Implement the machine instructions STARTTHREAD and ENDTHREAD
as described in the notes.

• Wait and signal: Implement the machine instructions WAIT and SIGNAL
as implemented in the notes.

4. Submit the resulting file

• VM.java

from your folder imPLvm in the IVLE workbook “Week 11”.

Make sure that you do not change any other files when you test your
programs.

Suggestion: When you are done with the solution, save your four files in a
secure place. Then download a fresh copy of the lab task, and place your
three files into that copy. Then re-do your tests.

2


