
CS4215—Programming Language

Implementation

Martin Henz

Thursday 12 January, 2012



2



Chapter 1

Language Processing

In this chapter, we take a look at programming languages from the point of
view of programming tools called language processors. We develop an informal
notation that allows to visualize the processing of programs by language proces-
sors, which leads to insights to the universality of certain language processing
techniques.

1.1 Hardware and Native Programs

Throughout this course, we shall use so-called T-diagrams for visualizing the
relationship between programs, tools and processors. T-diagrams were intro-
duced by Earley and Sturgis in 1970 [ES70]. The processor of a computer is
represented by a rectangle with a point at the bottom. The type of processor
is indicated in the rectangle. For example, a processor of the x86 family (IBM
PC) like this.

x86

A program is represented by a mushroom shape, where the foot indicates the
language in which the program is written—its source language. For example, the
program “Command & Conquer” written in machine code for the x86 processor
is represented as follows.

3



4 CHAPTER 1. LANGUAGE PROCESSING

Command & Conquer

x86

When represented like this, programs can be placed on top of processors to
indicate that the programs are run on the processors. A condition for this is
that the source language of the program matches the processor type.

Command & Conquer

x86

x86

Programs that are written in machine code of a hardware architecture are called
native to the architecture.

1.2 Translators

Translation from one programming language into another one is a central lan-
guage processing technique. The concept of “height” in programming languages
is debatable. High-level programming languages aim at describing software
“close to” the application domain that is being modeled whereas low-level pro-
gramming languages allow to describe solutions “close to” the actual physical
processes that occur inside the computer’s processors. Following this distinc-
tion, we distinguish between two kinds of translation tools:

• Compilers translate from a high-level language into a lower level language,
and

• decompilers translate from a low-level language into a higher one.

Special cases of compilers are assemblers, where the “high-level” language is
assembler code and the low-level language is machine code, and disassembler,
which are decompilers that translate from machine code to assembler code.

Translators translate programs written in one language—we call it the from-
language—into programs written in another language—called the to-language.
The corresponding T-diagram has the shape of a “T” (thus the name T-diagram)



1.2. TRANSLATORS 5

and indicates the from-language on the left and the to-language on the right.
Of course, translators are themselves programs written in some language (its
source language), which is indicated—as for all programs—in the lower part of
the “T” symbol. For example, a compiler that translates Basic programs to C
programs written in x86 machine code looks like this.

Basic C

x86

-

Translators are used to translate programs from one language to another. This
process is being executed on a computer by running the translator program. We
can indicate the process of translation by a side-ways combination of symbols.

Command & Conquer

Basic Basic C

x86

-

x86

Command & Conquer

C

Again, this works only if the languages at the connection between the pro-
grams, processor and the translator match. The language of the program that
we want to translate needs to match the from-language of the translator (here
Basic), the language of the desired output of the translation needs to match the
to-language of the translator (here C), and finally, the source language of the
translator needs to match the processor type (here x86).

Of course, the output of one translator can serve as input of another one,
leading to a chain of translation steps. For example, the program “Command &
Conquer” can be translated from Basic to C, and then from C to x86 machine
code.



6 CHAPTER 1. LANGUAGE PROCESSING

Command & Conquer

Basic Basic C

x86

-

x86

Command & Conquer

C

Command & Conquer

C C x86

x86

-

x86

Command & Conquer

x86

For convenience, we often combine two sequences of compilation into one
single T-diagram.



1.3. INTERPRETERS 7

Command & Conquer

Basic Basic C

x86

-

x86

Command & Conquer

C C x86

x86

-

x86

Command & Conquer

x86

Note, however, that this diagram denotes two distinct compiler runs, namely
first the run of the Basic-to-C compiler to compile the Basic program to C, and
then the run of the C-to-x86 compiler to compile the resulting C program to
x86 machine code.

Translators are programs, which need to be executed on a processor. Being
sophisticated pieces of software, translators are typically written in a high-level
language and then compiled to machine code. The diagram below describes the
compilation of a Basic-to-x86 compiler from C to x86 machine code.

Basic x86

C

-

C x86

x86

-

Basic x86

x86

-

x86

1.3 Interpreters

Apart from translators, the second kind of language processing tool are inter-
preters. An interpreter is a program that take another program (and the other



8 CHAPTER 1. LANGUAGE PROCESSING

program’s input data) as input and directly executes it, typically by reading
and executing single instructions or groups of instructions at a time.

We represent an interpreter by a rectangle, where the language being interpreted—
the target language of the interpreter—is indicated on the top. The language,
in which the interpreter is written—its source language—is indicated on the
bottom. For example, a Basic interpreter written in x86 machine code looks
like this.

Basic

x86

Now programs can be executed using an interpreter, which in turn is exe-
cuted by a processor. This works when the target language of the interpreter
is the same as the source language of the program, and when the source lan-
guage of the interpreter matches the processor type. For example, a program
“Command & Conquer” written in Basic can be executed as follows.

Command & Conquer

Basic

Basic

x86

x86

Note that the vertical stacking of language processors denotes single program
executions. In the diagram above, the “Command & Conquer” program in
Basic, the Basic interpreter, and the x86 machine all “run” at the same time,
at different levels of abstraction.

The process of interpretation is not confined to high-level languages. Ma-
chine code can be interpreted as well, a process called hardware emulation.
Hardware emulation allows us to run programs that are written in machine



1.4. COMBINATIONS 9

code for one machine on another machine. For example, an interpreter for x86
machine code written in PowerPC (MPC7450) machine code can be used to
run the program “Command & Conquer” written in x86 machine code on a
PowerPC.

Command & Conquer

x86

x86

MPC7450

MPC7450

1.4 Combining Compilation and Interpretation

The process of translation and interpretation is not confined to conventional
programming languages. Other kinds of data can be compiled from one format
to another, or interpreted by programs. For example, this text was written in
the typesetting language LATEX, translated into a format called DVI (device-
independent format), and from there to the PDF format, all on a MacBook Pro
x86 machine, as shown below.

notes 01

LATEX LATEX DVI

x86

-

x86

notes 01

DVI DVI PDF

x86

-

x86

notes 01

PDF



10 CHAPTER 1. LANGUAGE PROCESSING

The corresponding sequence of Unix instructions that the author carried out
are as follows:

henz$ latex notes_01.tex

henz$ dvipdf notes_01.dvi notes_01.pdf

The first command causes the typesetting program LATEXto translate the source
file 01.tex to the DVI file 01.dvi, and the second command translates 01.dvi
to the PDF file 01.pdf.

The resulting PDF file can be viewed using a program that reads the PDF
data and interprets it, displaying the data visually, as indicated below. The
company Adobe that developed the PDF format provides such an interpreter,
called Acrobat Reader.

01

PDF

PDF

x86

x86

An example for combining compilation and interpretation for the execution
of computer programs is the typical execution of Java programs. Java programs
are usually compiled into a format called Java Virtual Machine code. Usually,
this code is not executed directly by existing hardware, but interpreted using a
Java Virtual Machine. The picture below illustrates the process.



1.4. COMBINATIONS 11

Command & Conquer

Java Java JVM

x86

-

x86

Command & Conquer

JVM

-

Command & Conquer

JVM

JVM

x86

x86

Compiling Interpreters

Just like translators, interpreters are programs, typically written in higher pro-
gramming languages. In order to get an executable, we need to compile them.
As examples, we give the compilation of a JVM from C to x86 machine code,
and the compilation of Acrobat Reader (assuming it is written in C).

JVM

C C x86

x86

-

JVM

x86

x86



12 CHAPTER 1. LANGUAGE PROCESSING

PDF

C C x86

x86

-

PDF

x86

x86

Finally, it is possible to combine different interpreters with each other by
“stacking” them. Let us say Acrobat Reader is written in Java instead of C.
We can compile it to JVM code, and use a Java virtual machine to run it. The
picture below shows two interpreters in action to view a PDF file.

01

PDF

PDF

JVM

JVM

x86

x86

1.5 Summary

We have seen two distinct families of language processing tools. Translators
translate programs written in one language to another language, and interpreters
execute programs on a given underlying architecture. This architecture can
consist of a chain of interpreters, finally ending on a hardware platform. The



1.5. SUMMARY 13

notation of T-diagrams allows us to visualize the different language processing
steps involved in executing computer programs.



14 CHAPTER 1. LANGUAGE PROCESSING



Chapter 2

Inductive Definitions

2.1 Motivating Examples

It is common in the study of programming languages to define a set by a col-
lection of rules that specify the members of the set. Each rule has zero or more
premises, or requirements, and one conclusion.

Example 2.1 (Numerals, first attempt) We may define the set of unary
numerals (i.e., numerals in base 1) for the natural numbers as follows:

• Zero is a numeral.

• If n is a numeral, then Succ(n) is also a numeral.

Equivalently, we might say that the set Num of numerals is defined by the fol-
lowing rules:

• Zero ∈ Num.

• If n ∈ Num, then Succ(n) ∈ Num.

Observe that in each formulation the first rule has no premises, whereas the
second has one. Examples for elements of Num are:
Zero and Succ(Succ(Zero)).

Example 2.2 (Binary trees, first attempt) We may define the set of bi-
nary trees by the following rules:

• The empty tree, Empty, is a binary tree.

• If tl and tr are binary trees, then Node(tl, tr) is a binary tree.

Equivalently, we might say that the set Tree of binary trees is defined by the
following rules:

• Empty ∈ Tree.

15



16 CHAPTER 2. INDUCTIVE DEFINITIONS

• If tl, tr ∈ Tree, then Node(tl, tr) ∈ Tree.

The first rule has no premises; the second has two. Examples for elements of T
are:
Empty and Node(Empty,Node(Node(Empty,Empty),Empty)).

Notice the similarity between these two examples. The empty tree is analogous
to the number 0, and the node formation operation is analogous to the successor
operation (except that it has two predecessors!).

Excursion: Defining Sets by Rules in Java

We can directly translate the concept of defining sets by rules into Java. Our
examples translated to Java look like this:

interface Num {}

class Zero implements Num {}

class Succ implements Num {

public Num pred;

Succ(Num p) {pred = p;}

}

interface Tree {}

class Empty implements Tree {}

class Node implements Tree {

public Tree left, right;

Node(Tree l,Tree r) {left = l; right = r;}

}

These class definitions introduce the types Num and Tree, respectively, from
a given set of constructors. Each constructor defines a rule for membership
in that type. The (implicitly defined) constructors Zero() and Empty() have
no arguments; this corresponds to a rule with no premises. The constructor
Succ has one argument, corresponding to the single premise in the inductive
definition; the constructor Node has two arguments, corresponding to the two
premises in the inductive definition. We can construct the example instances of
type Num by

Num my_num = new Zero();

Num my_other_num = new Succ(new Succ(new Zero()));

and the example instances of type Tree by

Tree my_tree = new Empty();

Tree my_other_tree =

new Node(new Empty,

new Node(new Node(new Empty(),

new Empty()),

new Empty()));



2.2. THE EXTREMAL CLAUSE 17

Exercise 2.1 Give a collection of rules defining the set of strings over charac-
ters. Give the corresponding Java class definitions (without using Java’s string
class) for the same set.

2.2 The Extremal Clause

When we say that a set is defined by a set of rules, what precisely do we mean?
Which set do we consider to be defined by those rules? To see why this is an
important question, consider the set

StrangeNum = {Zero,Succ(Zero),Succ(Succ(Zero)), . . .}

∪{∞,Succ(∞),Succ(Succ(∞)), . . .}

where ∞ is an arbitrary new symbol. Observe that Zero ∈ StrangeNum; and
that if n ∈ StrangeNum, then Succ(n) ∈ StrangeNum—that is, StrangeNum
meets the requirements of the rules we gave to define the set Num. This means
that the rules alone are not sufficient to pick out the intended set Num, since
the strictly bigger set1 StrangeNum also satisfies these same rules.

To use a set of rules to define a set, we must say something more than just
that the set must obey these rules. What more is needed? We need an extremal
clause that states that nothing else is in the set except those elements that are
required to be there by the rules. This may sound like a bit of legalese, but
mathematically it is essential to include the extremal clause, for otherwise the
rules do not determine a unique set. Thus, the definition of Num should really
be stated as follows.

Example 2.3 (Numerals, revised) The set Num is defined by the following
rules:

• Zero is a numeral.

• If n is a numeral, then Succ(n) is also a numeral.

• nothing else is a numeral.

Equivalently, we may say that Num is the least set that fulfills the first two rules,
by which we mean precisely that nothing else is in the set except as is forced by
the rules. Here ”least” refers to the subset relation over sets; if X is the least
set that fulfills some rules, then for any set Y that fulfills the rules, we have
X ⊆ Y .

To see that StrangeNum is ruled out by the extremal clause, observe that
∞ has no business being in the specified set because it is not forced to be in
there by the rules. Observe that StrangeNum is not the least set that fulfills the
first two rules because StrangeNum ) Num and Num obeys these rules. Thus
StrangeNum is not defined by the rules.

1bigger in the sense that StrangeNum is a strict superset of Num



18 CHAPTER 2. INDUCTIVE DEFINITIONS

Similarly, we may revise the definition of binary trees by adding an extremal
clause as follows.

Example 2.4 (Binary trees, revised) We may define the set of binary trees
by the following rules:

• The empty tree, Empty is a binary tree.

• If tl and tr are binary trees, then Node(tl, tr) is a binary tree.

• Nothing else is a binary tree.

Equivalently, we might say that the set Tree of binary trees is the least set defined
by the following two rules

• Empty ∈ Tree.

• If tl, tr ∈ Tree, then Node(tl, tr) ∈ Tree.

The extremal clause ensures that a collection of rules of the kind given above
determines a unique set. In practice we do not explicitly state the extremal
clause, but rather we state that the set in question is inductively defined by
a given collection of rules. For example, we may say that the set Num is in-
ductively defined by the two rules membership rules given in Example 2.1. In
doing so we are implicitly stating that nothing else is to be a member of that
set unless it is forced to be there by the rules.

2.3 Inductive Definition with Inference Rules

It is quite common to give an inductive definition by a set of inference rules. For
example, we might say that the set Num is inductively defined by the following
rules:

Zero

n

Succ(n)

Similarly, we might say that the set Tree is inductively defined by the following
rules:

Empty

tl tr

Node(tl, tr)

The horizontal line plays the role of “if . . . then . . .” in our earlier presentations
of the rules. In general, in an inductive definition of a set X, an inference rule
of the form



2.3. INFERENCE RULES 19

x1 · · · xn

x

stands for the rule “if x1 . . . xn ∈ X, then x ∈ X. Why do we say that the
least set defined by a collection of rules is inductively defined by it? As the ter-
minology suggests, the answer is that there is a close connection with reasoning
by mathematical induction. Here’s why. Suppose that we wish to prove that
every binary tree t has a height h satisfying the following two requirements:

• The height of Empty is 0.

• If tl and tr have heights hl and hr, respectively, then the height of Node(tl, tr)
is 1 +max(hl, hr).

We call these two conditions the specification of the height of a binary tree. The
question is this: how do we know that every binary tree in fact has a height? This
might seem like an odd question at first, but consider that the infinite binary tree
Node(Node(. . . , . . .),Node(. . . , . . .)) has no height in the sense specified! Luckily,
the extremal clause rules out such “infinite trees”, which makes it possible to
assign a height to each binary tree.

How do we prove that every binary tree has a height? By induction! We
have to prove that for every binary tree t ∈ Tree, there exists a number h

satisfying the specification of height given above. Given the inductive definition
of binary trees, what might t be? By the first rule defining binary trees, t might
be Empty. In that case, t clearly has a height, namely 0, in accordance with the
specification. By the second rule defining binary trees, t might have the form
Node(tl, tr), where tl and tr are also binary trees. By induction we may assume
that each of them has a height, say hl and hr, respectively. But then the height
h of t is uniquely determined by the equation h = 1+max(hl, hr) as required by
the specification. Since Tree contains no other elements than are given by these
two rules, we have demonstrated that every binary tree t ∈ Tree has a height h.

Height of Trees in Java

Here is another point of view on the same question. Let look at the definition
of the height function for the Java type Tree.

interface Tree {

public int height();

}

class Empty implements Tree {

public int height() {return 0;}

}

class Node implements Tree {

public Tree left, right;

Node(Tree l,Tree r) {left = l; right = r;}



20 CHAPTER 2. INDUCTIVE DEFINITIONS

public int height() {

return 1 + Math.max(height(left),height(right));

}

}

The question is: why does the call height(t) terminate for every t of type
Tree? Once again, the proof is by induction on the structure of t. If t is
an instance of Empty, then height(t) terminates returning 0, as required. If,
on the other hand, t is an instance of Node, then inductively we may assume
that height(t.left) terminates (returning hl) and that height(t.right) ter-
minates (returning hr), from which it follows that height(t) terminates with
1 +max(hl, hr). This completes the proof.



Bibliography

[ES70] J. Earley and H. Sturgis. A formalism for translator interactions. Com-
munications of the ACM, 13:607–617, 1970.

21


