
CS4215—Programming Language

Implementation

Martin Henz

Thursday 19 January, 2012

2

Chapter 3

An Overture: The

Language ePL

In this chapter, we are looking at a very simple “programming” language, ePL
(expression Programming Language), which allows for calculating the results
of arithmetic and boolean expressions. A typical “program” in ePL is the ex-
pression

10 * 2 > 21

The user expects that the programming system evaluates such expressions, and
returns the result. Thus the execution of an ePL program results in a value, such
as the boolean value false for the ePL program above. This chapter explores
several ways in which such an execution can be precisely described (semantics),
as well as ways to implement this execution in a programming system.

The language ePL is very simple; it does not allow for defining functions,
data structures, loops etc. It is not possible to program algorithms that go be-
yond following the rules of expression evaluation. The language is not Turing-
complete, which means it is not powerful enough to program arbitrary compu-
tational tasks. However, it gives us the opportunity to introduce dynamic and
static semantics in Sections 3.2 and 3.3, denotational semantics in Section 3.4
and a semantics based on a virtual machine in Section 3.5, along with language
implementations based on these different kinds of semantics.

3.1 The Syntax of ePL

The set of ePL programs is the least set that satisfies the following rules, where
n ranges over the set of integers, p1 ranges over the set of unary primitive
operations P1 = {\}, and p2 ranges over the set of binary primitive operations
P2 = {|,&,+, -,*,/, =,>,<}.

3

4 CHAPTER 3. THE LANGUAGE EPL

n true false

E

p1[E]

E1 E2

p2[E1, E2]

We shall give the following meaning to the primitive operators:

• binary boolean operators: | (boolean disjunction), & (boolean conjunc-
tion),

• unary boolean operator: \ (boolean negation),

• binary arithmetic operators: +, -, *, /,

• integer comparison operators: = (equality), < (less-than), > (greater-than).

Syntactic Conventions

We would like to use the following syntactic conventions:

• We can use parentheses in order to group expressions together.

• We use the usual infix and prefix notation for operators. The binary
operators are left-associative and the usual precedence rules apply such
that 1 + 2 * 3 > 10 - 4 stands for >[+[1,*[2,3]],-[10,4]]

Examples

Example 3.1 (Constants) The following expression is an ePL program.

42

Such programs are constants. Their meaning is the constant taken as arithmetic
or boolean values. Other examples for constant expressions are -333, and true.
Note that -333 is an integer constant expression captured by the first rule above.

Example 3.2 (Arithmetic Expressions) The following expression is an ePL

program.

-15 * 7 + 2

The “usual precedence rules” for the binary operators * and + prescribes that
the multiplication is carried out before the addition. In this chapter, we are
not concerned with the syntactic appearance of expressions; we assume that
the precedence rules are always followed, and treat the expression above as
+[*[-15,7],2].

Example 3.3 (Boolean Expressions) The following expression is an ePL

program.

\ false & true | false

3.2. DYNAMIC SEMANTICS OF EPL 5

Here, the conjunction operator & has a higher precedence than the disjunction
operator |, which means that the conjunction is carried out before the disjunc-
tion.

Example 3.4 (Mixed Expressions) The following expression is an ePL pro-

gram.

17 < 20 - 4 & 10 = 4 + 11

Note that we allow the comparison operators <, > and = only between integer
values, not between boolean values. Section 3.3 will formalize this restriction.

3.2 Dynamic Semantics of ePL

In order to define how programs are executed, we first use an approach that
mimicks a human approach, taken by say a primary school student. The idea is
to look for “things to do” and transform a given expression step-by-step until
there is “nothing to do” any longer.

More formally, we define a relation that tells us how to carry out evaluation
steps to execute ePL programs. This relation, we call one-step evaluation. This
relation will then serve as the building block for an evaluation relation that
defines the evaluation of programs.

3.2.1 Values

The goal of evaluating an expression is to reach a value, an expression that
cannot be further evaluated. In ePL, a value is either an integer constant,
or a boolean constant. In the following rules defining the contraction relation
>ePL for ePL, we denote values by v. That means rules in which v appears are
restricted to values in the place of v.

3.2.2 Contraction

Before we get to one-step evaluation, we introduce an auxilary relation called
contraction, denoted by >ePL, that directly captures the application of primitive
operators to values.

For each primitive operation p and each set of values v1, v2 (we only have
unary and binary operations) such that the result of applying p to v1 and v2 is
a value v, we define a corresponding contraction rule.

p1[v1] >ePL v

[OpVals1]

p2[v1, v2] >ePL v

[OpVals2]

6 CHAPTER 3. THE LANGUAGE EPL

Note that this infinite set of rules defines the meaning of the primitive operators.
For example, one instance of the second rule is:

+[1, 1] >ePL 2

3.2.3 One-Step Evaluation

Having defined contraction, we can now define one-step evaluation 7→ePL induc-
tively by the following rules.

E >ePL E′

E 7→ePL E′

[Contraction]

The evaluation of sub-expressions of primitive operations is defined as follows.

E 7→ePL E′

p1[E] 7→ePL p1[E
′]

[OpArg1]

E1 7→ePL E′

1

p2[E1, E2] 7→ePL p2[E
′

1
, E2]

[OpArg2]

E2 7→ePL E′

2

p2[E1, E2] 7→ePL p2[E1, E
′

2
]

[OpArg3]

Note that one-step evaluation does not prescribe the order in which a given ePL
expression is evaluated. Both of the following statements hold:

3 * 2 + 4 * 5 7→ePL 3 * 2 + 20

3 * 2 + 4 * 5 7→ePL 6 + 4 * 5

This corresponds to our intuition about evaluation of expressions; we can work
on any sub-expression, as long as the sub-expression is evaluated correctly. Note
here that this approach makes the implicit assumption that the result of evalua-
tion is independent of the evaluation order. We will study the issue of evaluation
order in the next chapter in more detail.

3.2.4 Evaluation

The evaluation relation 7→ePL
∗ is defined as the reflexive transitive closure of

one-step evaluation 7→ePL, defined as follows:

3.2. DYNAMIC SEMANTICS OF EPL 7

E1 7→ePL E2

E1 7→ePL
∗ E2

[7→ePL
∗

B
]

E 7→ePL
∗ E

[7→ePL
∗

R
]

E1 7→ePL
∗ E2 E2 7→ePL

∗ E3

E1 7→ePL
∗ E3

[7→ePL
∗

T
]

Using 7→ePL
∗, we can keep evaluating expressions until a value is reached. At

that point, there is “nothing left to do”, and that value is the result of the
computation. An expression for which we can carry out one step according to
7→ePL is called reducible, whereas an expression with nothing left to do is called
irreducible.

Evaluation defines how programs get executed. Such formal definitions of
program execution are called a dynamic semantics. An important question to
ask about a dynamic semantics based on evaluation is whether it is deterministic,
i.e. whether for every expression E, there is at most one value v such that
E 7→ePL

∗v. We will take a closer look at this question in the next chapter, when
we study the dynamic semantics of simPL and its implementation.

3.2.5 Implementation

First, we need to settle how to represent ePL programs in Java. Fortunately, we
have defined the language ePL inductively, and therefore can use the technique
presented in Chapter 2. The interface for ePL expressions looks like this.

public interface Express ion {}

The three base cases in our inductive definition on page 4 are handled by the
following two classes that implement Expression.

public class BoolConstant implements Express ion {
public St r ing value ;
public BoolConstant (S t r ing v) {

value = v ;
}

}
public class IntConstant implements Express ion {

public St r ing value ;
public IntConstant (S t r ing v) {

value = v ;
}

}

Finally, the rules

8 CHAPTER 3. THE LANGUAGE EPL

E

p1[E]

E1 E2

p2[E1, E2]

are represented by classes for unary and binary primitive operators.

public class UnaryPr imit iveAppl i cat ion implements Express ion {
public St r ing operator ;
public Express ion argument ;
public UnaryPr imit iveAppl i cat ion (S t r ing op , Express ion a) {

operator = op ;
argument = a ;

}
}
public class BinaryPr imi t iveApp l i ca t i on implements Express ion {

public St r ing operator ;
public Express ion argument1 , argument2 ;
public BinaryPr imi t iveApp l i ca t i on (S t r ing op , Express ion a1 ,

Express ion a2) {
operator = op ;
argument1 = a1 ;
argument2 = a2 ;

}

The dynamic semantics of ePL can be implemented by a function that checks
if an expression is reducible. If so, it carries out one step, and checks again. if
not, it returns the expression as result.

class Evaluator {
stat ic public Express ion eva luate (Express ion exp) {

return r e du c i b l e (exp) ?
eva luate (oneStep (exp))
: exp ;

}
}

The implementation of one-step evaluation is left as an exercise.

3.3 Static Semantics for ePL

Programming languages such as ML and Java (with certain restrictions) are said
to be “safe” (or “type safe”, or “strongly typed”). This means that certain kinds
of errors cannot happen during execution. For example, it will never happen
that an integer is mistaken for a boolean value at runtime. To this aim, the user
(or the compiler) annotates the program with types. The compiler checks that
all type annotations are correct. If things are set up in the right way, programs
that are accepted by the compiler will never lead to type-related runtime errors.

3.3. STATIC SEMANTICS FOR EPL 9

The language ePL does not have type declarations for expressions, which
means that we need to compute the types that correspond to each sub-expression.
Section 3.3.1 defines the notion of well-typed programs by introducing a type
system for ePL. This type system will allow us to compute a type for every
sub-expression, if such a type exists. Section 3.3.2 then asks what properties
we expect from well-typed programs. A precise answer to this question will be
given in Chapter 6.

3.3.1 A Type System for ePL

Not all expressions in ePL make sense. For example,

true + 1

does not make sense, because true is a boolean expression, whereas the operator
+ to which true is passed as first argument, expects integers as arguments.
We say that the expression is ill-typed, because a typing condition is not met.
Expressions that meet all typing conditions are called well-typed.

Expressions in ePL either represent integer or boolean values. Thus, the set
of well-typed expressions is defined by the binary typing relation

“ : ” : ePL → {int, bool}

We use infix notation for “:”, writing E : t, which is read as “the expression E
has type t.

Example 3.5 We will define the typing relation “:” such that the following

expressions hold:

• 1+2 : int

• false & true : bool

• 10 < 17-8 : bool

but:

• true + 1 : t
does not hold, because in the expression, integer addition is applied to a

boolean value.

• 3 + 1 * 5 : bool
does not hold, because the expression has type int, whereas bool is given

after the : symbol.

We define the typing relation inductively as follows.
Constants get their obvious type:

n : int

[Num]

true : bool

[True]

10 CHAPTER 3. THE LANGUAGE EPL

false : bool

[False]

For the unary primitive operation \ we have the following rule.

E : bool

\[E] : bool

[Prim1]

For each binary primitive operation p2, we have a rule of the following form.

E1 : t1 E2 : t2

p[E1, E2] : t

[Prim2]

where the types t1, t2, t are given by the following table.
p t1 t2 t

+ int int int

- int int int

* int int int

/ int int int

& bool bool bool

| bool bool bool

= int int bool

< int int bool

> int int bool

This completes the definition of the typing relation. Now we can define what it
means for an expression to be well-typed.

Definition 3.1 An expression E is well-typed, if there is a type t such that

E : t.

Example 3.6 The following proof shows that the typing relation holds for the

expression 2 * 3 > 7: bool.

2 : int

[Num]

3 : int

[Num]

2*3 : int

[Prim]

7 : int

[Num]

2*3>7 : bool

[Prim]

3.4. DENOTATIONAL SEMANTICS OF EPL 11

Definition 3.2 The set of well-typed ePL expression is called well-typed ePL,
denoted using bold font: ePL.

In the rest of this chapter, we will only deal with well-typed ePL programs.

3.3.2 Type Safety

The dynamic semantics for ePL of Section 3.2 defines the evaluation of ePL
programs. Section 3.3.1 described a way of classifying ePL programs as “well-
typed”. Such systems for classifying programs are called static semantics. Type
safety is a property of a given language with a given static and dynamic seman-
tics. It says that if a program of the languge is well-typed, certain problems are
guaranteed not to occur at runtime.

What do we consider as “problems”? One kind of problem is that we would
get stuck in the process of evaluation. That is the case when no evaluation
rule applies to an expression, but the expression is not a value. We would
like to be able to guarantee to make progress in evaluation. A second kind of
problem is that the type changes as evaluation proceeds. This property is called
preservation.

In Chapter 6, we shall formalize these concepts, leading to a notion of type-
safety for the programming language simPL.

3.4 Denotational Semantics of ePL

The dynamic semantics that we have seen so far relies on the idea of contraction.
An expression was evaluated by contracting subexpressions, until no further
contraction was possible. This evaluation process constituted the “meaning” of
programs. We treated the evaluation of expressions as a mere transformation
of expressions to expressions. That means that we never left the syntactic
realm. Evaluation of expressions was the game of transforming expressions.
A minor nuisance was that we had infinitely many rules for the game. We
list some major disadvantages of this approach to defining the semantics of a
programming language.

• Primitive operations that are not total functions, such as division, can
make the evaluation process get stuck. This means that evaluation fails
to find a value. We would like to have a more explicit way of handling
such a runtime error.

• Dynamic semantics cannot be extended easily to other language paradigms
such as imperative programming. In Chapter 11, we shall define the se-
mantics of a simple imperative language.

As a result of these difficulties, dynamic semantics are rarely used for describing
the meaning of computer programs.

The idea of denotational semantics is to directly assign a mathematical value
as a meaning to an expression. Compared to dynamic semantics, there are two

12 CHAPTER 3. THE LANGUAGE EPL

main advantages of this approach. Firstly, we can employ known mathematical
concepts such as integers, booleans, functions etc to describe the meaning of
programs. Compare this option with the awkward construction of an infinite
number of rules for defining simple arithmetic operators! Secondly, denotational
semantics avoids the clumsy construction of evaluation as the transitive closure
of one-step evaluation, which forced us to define erroneous programs as programs
whose evaluation gets “stuck”.

We follow the approach of [Sch88], and define a denotational semantics as
consisting of three parts:

• A description of the syntax of the language in question,

• a collection of semantic domains with associated algebraic operations and
properties, and

• a collection of semantic functions which together describe the meaning of
programs.

3.4.1 Decimal Numerals

Before we start with the denotational semantics of the language ePL, we shall
concentrate on a small aspect of ePL, namely decimal numerals representing
non-negative integers in ePL programs. The language N of decimal numerals
contains non-empty strings of decimal digits. We can describe the language
using the following twenty rules:

0

· · ·

9

n

n0

· · ·
n

n9

For example, the sequence of digits 12 and 987654321 are elements of the
language N of decimal numerals. Such numerals occur in ePL programs such
as 12 + 987654321.

As semantic domain, we choose the integers, denoted by Int, taking for
granted the ring properties of Int with respect to the operations of addition
and multiplication.

The semantic function
֌N: N → Int

describes the meaning of decimal numerals as their corresponding integer value.
We use the usual notation of rules to describe ֌N as a relation.

0 ֌N 0

Note that the 0 on the left hand side denotes an element of our language of
decimal numerals, whereas the 0 on the right hand side denotes the integer
value 0, the neutral element for addition in the ring of integers.

3.4. DENOTATIONAL SEMANTICS OF EPL 13

The other nineteen rules for ֌N are:

1 ֌N 1

· · ·

9 ֌N 9

n ֌N i

n0 ֌N 10 · i

n ֌N i

n1 ֌N 10 · i+ 1

· · ·

n ֌N i

n9 ֌N 10 · i+ 9

Again, note the difference between the left and right hand side of ֌N. In
the last ten rules, the n on the left hand side denote elements of our language
of decimal numerals, whereas the i on the right hand side denote integer values.
The symbols + and · denote addition and multiplication in the ring of integers.

The left hand sides of ֌N in the bottom of all four rules are mutually
distinct. It is therefore easy to see that the relation defined by the rules is
indeed a function.

Furthermore, it is not difficult to see that ֌N is a total function, since the
rules defining ֌N cover all rules defining N.

To demonstrate the usefulness of denotational semantics for proving prop-
erties of languages, let us prove that the “successor” operation on decimal nu-
merals coincides with the successor function on integers.

We define the successor function ′ on decimal numerals as follows:

0′ = 1

· · ·

8′ = 9 9′ = 10

n0′ = n1

· · ·

n8′ = n9

n′ = m

n9′ = m0

Proposition 3.1 For all n ∈ N, if n ֌N i, and n′ ֌N j, then j = i+ 1.

Proof: The cases for 0, . . . , 9, and n0, . . . , n8 are immediate. We prove by
induction on the rules of ֌N that if n9 ֌N i, and n9′ ֌N j, then j = i+ 1.
For numerals of the form n9, we have n9′ = n′0 according to the definition of ′.
From the definition of ֌N, we have n′0 ֌N 10 · k, where n′ ֌N k. From
the induction hypothesis, we have: if n ֌N h, then k = h + 1. Therefore,
10 · k = 10 · (h + 1) = 10 · h + 9 + 1. From the definition of ֌N and since
n ֌N h, we have 10 ·h+9+1 = i+1, and thus n9′ ֌N j, where j = i+1. �

3.4.2 Denotational Semantics for ePL without Division

We define the sublanguage ePL0 of ePL, where division is not allowed. Thus,
ePL0 is the well-typed sub-language of ePL0, which is defined by the following
rules.

14 CHAPTER 3. THE LANGUAGE EPL

n true false

E1 E2

p[E1, E2]

where p ∈ {|,&,+, -,*,=,>,<}
E

p[E]

where p ∈ {\}

The following semantic domains are suitable for this language.

Semantic domain Definition Explanation
Bool {true, false} ring of booleans
Int {. . . ,−2,−1, 0, 1, 2, . . .} ring of integer
EV Bool + Int expressible values

The ring of integers Int is already introduced in the previous section. The
ring of booleans is the ring formed by the set {true, false} with the operators
disjunction, denoted by ∨, and conjunction, denoted by ∧.

The symbol + that we are using in the last line denotes disjoint union.
Informally, disjoint union is a kind of union that preserves the origin of the
values. That means from an element of Int +Bool we can find out whether it
came from Int or Bool, regardless of how integers and booleans are represented,
i.e. even if boolean values are represented by integers such as 0 and 1.

Formally, disjoint union can be defined as follows:

S1 + S2 = {(1, x1) | x1 ∈ S1} ∪ {(2, x2) | x2 ∈ S2}

We canonically extend the operations and properties of the component domains
Bool and Int to the set Int+Bool. We choose the name EV (expressible val-
ues) for this set to indicate that its elements are the possible results of evaluating
ePL expressions.

The semantic function

· ֌ · : ePL0 → EV

defined by the following rules, expresses the meaning of elements of ePL0, by
defining the value of each element.

true ֌ true false ֌ false

n ֌N i

n ֌ i

Note that the last rule employs the denotational semantics of decimal numerals
described in the previous section.

On the right hand sides of ֌ in the following rules, we are making use of the
operations of addition, subtraction and multiplication in the ring of integers.

E1 ֌ v1 E2 ֌ v2

E1+E2 ֌ v1 + v2

E1 ֌ v1 E2 ֌ v2

E1-E2 ֌ v1 − v2

3.4. DENOTATIONAL SEMANTICS OF EPL 15

E1 ֌ v1 E2 ֌ v2

E1*E2 ֌ v1 · v2

The following three rules make use of disjunction, conjunction and negation in
the ring of booleans.

E1 ֌ v1 E2 ֌ v2

E1&E2 ֌ v1 ∧ v2

E1 ֌ v1 E2 ֌ v2

E1|E2 ֌ v1 ∨ v2

E ֌ v

\E ֌ ¬v

The operation ≡ in the following rule reifies the identity on integers to a boolean
value. For example, 1 ≡ 2 = false and 3 ≡ 3 = true.

E1 ֌ v1 E2 ֌ v2

E1=E2 ֌ v1 ≡ v2

The operations > and < in the final two rules reflect the less-than and greater-
than operations using the usual total ordering on integers.

E1 ֌ v1 E2 ֌ v2

E1>E2 ֌ v1 > v2

E1 ֌ v1 E2 ֌ v2

E1<E2 ֌ v1 < v2

Example 3.7 1 + 2 > 3 ֌ false holds because 1 + 2 ֌ 3 and 3 > 3 is false.

3.4.3 Denotational Semantics for ePL

The language ePL adds division to ePL0.

E1 E2

E1/E2

The difficulty lies in the fact that division on integers is a partial function, not
being defined for 0 as second argument. In this section, we are more ambitious
than in the previous one, and want to give meaning to programs, even if division
by 0 occurs. For this purpose, we extend the definitions of semantic domains
and functions as follows.

Semantic domain Definition Explanation
Bool {true, false} ring of booleans
Int {. . . ,−2,−1, 0, 1, 2, . . .} ring of integers
EV Bool + Int + {⊥} expressible values
DV Bool + Int denotable values

16 CHAPTER 3. THE LANGUAGE EPL

Note that we add the symbol ⊥ to the set of expressible values. The meaning
of expressions that execute a division by 0 will be ⊥. The semantic function
·
 · ֌ · is modified to take the occurrence of the error value ⊥ into account.

true ֌ true false ֌ false

n ֌N i

n ֌ i

Instead of having one single rule for each primitive operator, we now have three
rules for each of the binary operators +, -, and *. The two additional rules in
each case express that the meaning of an expression is ⊥ if the meaning of one
of the component expressions is ⊥.

E1 ֌ ⊥

E1+E2 ֌ ⊥

E2 ֌ ⊥

E1+E2 ֌ ⊥

E1 ֌ v1 E2 ֌ v2

E1+E2 ֌ v1 + v2

if v1, v2 6= ⊥

E1 ֌ ⊥

E1-E2 ֌ ⊥

E2 ֌ ⊥

E1-E2 ֌ ⊥

E1 ֌ v1 E2 ֌ v2

E1-E2 ֌ v1 − v2

if v1, v2 6= ⊥

E1 ֌ ⊥

E1*E2 ֌ ⊥

E2 ֌ ⊥

E1*E2 ֌ ⊥

E1 ֌ v1 E2 ֌ v2

E1*E2 ֌ v1 · v2

if v1, v2 6= ⊥

The first three rules for division are similar. In the third rule / stands for integer
division (with rounding towards 0).

E1 ֌ ⊥

E1/E2 ֌ ⊥

E2 ֌ ⊥

E1/E2 ֌ ⊥

E1 ֌ v1 E2 ֌ v2

E1/E2 ֌ v1/v2

if v1, v2 6= ⊥ and v2 6= 0

3.4. DENOTATIONAL SEMANTICS OF EPL 17

The last rule for division covers the case that the meaning of the second ar-
gument of division is 0. Since division by 0 is not defined, the meaning of the
entire expression is ⊥.

E2 ֌ 0

E1/E2 ֌ ⊥

Equipped with this scheme of handling the error value, the remaining rules for
ePL are not surprising.

E1 ֌ ⊥

E1&E2 ֌ ⊥

E2 ֌ ⊥

E1&E2 ֌ ⊥

E1 ֌ v1 E2 ֌ v2

E1&E2 ֌ v1 ∧ v2

if v1, v2 6= ⊥

E1 ֌ ⊥

E1|E2 ֌ ⊥

E2 ֌ ⊥

E1|E2 ֌ ⊥

E1 ֌ v1 E2 ֌ v2

E1|E2 ֌ v1 ∨ v2

if v1, v2 6= ⊥

E ֌ ⊥

\E ֌ ⊥

E ֌ v

\E ֌ ¬v

if v 6= ⊥

E1 ֌ ⊥

E1=E2 ֌ ⊥

E2 ֌ ⊥

E1=E2 ֌ ⊥

E1 ֌ v1 E2 ֌ v2

E1=E2 ֌ v1 ≡ v2

if v1, v2 6= ⊥

E1 ֌ ⊥

E1>E2 ֌ ⊥

E2 ֌ ⊥

E1>E2 ֌ ⊥

18 CHAPTER 3. THE LANGUAGE EPL

E1 ֌ v1 E2 ֌ v2

E1>E2 ֌ v1 > v2

if v1, v2 6= ⊥

E1 ֌ ⊥

E1<E2 ֌ ⊥

E2 ֌ ⊥

E1<E2 ֌ ⊥

E1 ֌ v1 E2 ֌ v2

E1<E2 ֌ v1 < v2

if v1, v2 6= ⊥

Note that by introducing the error value, we achieve that ֌ is still a total
function although its component function / is not.

Example 3.8 5+(3/0) ֌ ⊥, since 3/0 ֌ ⊥.

Semantic rules that properly treat error values tend to be complex. (They
took us a couple of pages for the simple language ePL.) In the following, we are
therefore omitting the treatment of the error value for simplicity.

3.5 A Virtual Machine for ePL

The semantic frameworks that we have seen so far suffer from two drawbacks.
Firstly, they rely on complex mathematical formalism, and secondly, they do
not properly account for the space and time complexity of programs.

Complex mathematical formalism Our improved understanding of the
language ePL with respect to error handling was achieved by employing a con-
siderable mathematical machinery, using one-step evaluation and evaluation for
dynamic semantics and complex semantic domains for denotational semantics.
In their implementation, we made heavy use of Java. We used classes with mem-
ber functions, recursion etc. Such an approach is questionable; we explained the
language ePL by using either a complex mathematical construction or another
high-level programming language, Java. How are we going to explain Java? By
reduction to another high-level programming language?

Lack of realism The substitution operation that we employed in dynamic

semantics is far away from what happens in real programming systems. We
can therefore not hope to properly account for the space and time complexity
of programs using dynamic semantics. The aim in denotational semantics is to
describe the meaning of programs as mathematical values, and not as a process,
and therefore denotational semantics would have to be significantly modified to
account for the resources that executing programs consume.

3.5. A VIRTUAL MACHINE FOR EPL 19

In this chapter, we are aiming for a simpler, lower-level description of the
meaning of ePL programs, which will allow us to realistically capture the run-
time of programs and some aspects of their space consumption. To this aim, we
are going to translate ePL to a machine language. We will formally specify a
machine for executing machine language code, and describe its implementation
in Java.

So far, our semantic frameworks relied on the ability to call functions. That
allowed us to define the semantics of addition by equations of the form

E1 ֌ v1 E2 ֌ v2

+[E1, E2] ֌ v1 + v2

More specifically, we relied on the ability to remember to evaluate E2 after
evaluating E1, and then to add the results together. Our high-level notation
hid these details.

The goal of this chapter is to present a framework, in which a simple ma-
chine suffices to execute programs, which will force us to make explicit how we
remember things.

In order to implement ePL in such a low-level setting, we first compile the
given expression to a form that is amenable to the machine. We call the result
of the compilation ePL virtual machine code. The language containing all ePL
virtual machine code programs is called eVML.

Section 3.5.1 describes the virtual machine language eVML. Section 3.5.2
presents the compilation process from ePL to eVML, Section 3.5.3 shows how
the machine runs, and Section 3.5.4 asks whether we could prove that such an
implementation is correct. Section 3.5.5 shows how eVML can be implemented
in Java, and Section 3.5.6 describes the overall process of executing ePL pro-
grams using a virtual machine written in Java in terms of T-diagrams.

3.5.1 The Machine Language eVML

eVML programs consist of sequences of machine instructions, terminated by the
special instruction DONE.

eVML is defined by the rules of this section.

DONE

s

LDCI i . s

s

LDCB b . s

The first rule states that DONE is a valid eVML program. The operator . in the
second and third rules denotes the concatenation of instruction sequences. In
the second and third rules, i stands for elements of the ring of integers, and b
stands for elements of the ring of booleans, respectively. The letters LDCI in
the machine instruction LDCI n stand for “LoaD Constant Integer”. The letters
LDCB in the machine instruction LDCB b stand for “LoaD Constant Boolean”.

20 CHAPTER 3. THE LANGUAGE EPL

The remaining ten rules introduce machine instructions corresponding to
each of the operators in ePL.

s

PLUS.s

s

MINUS.s

s

TIMES.s

s

DIV.s

s

AND.s

s

OR.s

s

NOT.s

s

LT.s

s

GT.s

s

EQ.s

To clarify that we are dealing with eVML programs, we are separating instruc-
tions with commas and enclosing instruction sequences in brackets.

Example 3.9 The instruction sequence

[LDCI 1, LDCI 2, PLUS, DONE]

represents a valid eVML program.

In our Java implementation, we represent instructions as instances of classes,
which implement the INSTRUCTION interface.

public class INSTRUCTION implements Serializable {

public int OPCODE;

}

Each INSTRUCTION carries an OPCODE that uniquely identifies its class. For
example, the class LDCI looks like this.

public class LDCI extends INSTRUCTION {

public String VALUE;

public LDCI(String i) {

OPCODE = OPCODES.LDCI;

VALUE = i;

}

}

For convenience, we store the opcodes in a class OPCODES.

public class OPCODES {

public static final byte

LDCI = 1,

LDCB = 2,

...

}

3.5. A VIRTUAL MACHINE FOR EPL 21

Example 3.10 Now, we can create the instruction sequence in Example 3.9 as

follows:

INSTRUCTION[] ia = new INSTRUCTION[4];

ia[0] = new LDCI(1);

ia[1] = new LDCI(2);

ia[2] = new PLUS();

ia[3] = new DONE();

3.5.2 Compiling ePL to eVML

The translation from ePL to eVML is accomplished by a function

։: ePL → eVML

which appends the instruction DONE to the result of the auxilary translation
function →֒.

E →֒ s

E ։ s.DONE

The auxiliary translation function →֒ is defined by the following rules.

n →֒ LDCI n true →֒ LDCB true false →֒ LDCB false

E1 →֒ s1 E2 →֒ s2

E1+E2 →֒ s1.s2.PLUS

E1 →֒ s1 E2 →֒ s2

E1*E2 →֒ s1.s2.TIMES

E1 →֒ s1 E2 →֒ s2

E1/E2 →֒ s1.s2.DIV

E1 →֒ s1 E2 →֒ s2

E1&E2 →֒ s1.s2.AND

E1 →֒ s1 E2 →֒ s2

E1|E2 →֒ s1.s2.OR

E →֒ s

\ E →֒ s.NOT

E1 →֒ s1 E2 →֒ s2

E1<E2 →֒ s1.s2.LT

E1 →֒ s1 E2 →֒ s2

E1>E2 →֒ s1.s2.GT

E1 →֒ s1 E2 →֒ s2

E1=E2 →֒ s1.s2.EQ

Example 3.11 Using the usual derivation trees, we can show

(1 + 2) * 3 ։ [LDCI 1, LDCI 2, PLUS, LDCI 3, TIMES, DONE], and
1 + (2 * 3) ։ [LDCI 1, LDCI 2, LDCI 3, TIMES, PLUS, DONE].

22 CHAPTER 3. THE LANGUAGE EPL

Observe that the machine code places the operator of an arithmetic expres-
sion after its arguments. This way of writing expressions is called Reverse Polish
Notation, in honor of its inventor, the Polish logician Jan Lukasiewicz, and is
designed for efficient execution on automata.

Our compiler for ePL translates a given ePL expression—as usual repre-
sented by its syntax tree—to an INSTRUCTION array.

Expression epl=Parse.fromFileName(eplfile);

INSTRUCTION ia[] = Compile.compile(epl));

3.5.3 Executing eVML Code

The machine that we will use to execute eVML programs is a variation of a
push-down automaton. Let us fix a specific program s. The machine Ms that
executes s is given as an automaton that transforms a given machine state to
another state. The machine state is represented by so-called registers. In the
case of eVML, we need two registers, called program counter—denoted by the
symbol pc—and operand stack —denoted by the symbol os.

The program counter is used to point to a specific instruction in s, starting
from position 0. For example, if pc = 2, and s is the program [LDCI 1, LDCI 2,
PLUS, LDCI 3, TIMES, DONE], then s(pc) = PLUS.

The operand stack is a sequence of values from Int + Bool. We will use
angle brackets for operand stacks to differentiate them from eVML programs.
For example, os = 〈10, 20, true〉 represents an operand stack with 10 on top,
followed by 20, followed by true.

Now, we can describe the behavior of the machineMs as a transition function
⇉s, which transforms machine states to machine states, and which is defined
by the following twelve rules.

s(pc) = LDCI i

(os, pc) ⇉s (i.os, pc+ 1)

s(pc) = LDCB b

(os, pc) ⇉s (b.os, pc+ 1)

These load instructions simply push their value on the operand stack. The
remaining rules implement the instructions corresponding to ePL’s operators.
They pop their arguments from the operand stack, and push the result of the
operation back onto the operand stack.

s(pc) = PLUS

(i2.i1.os, pc) ⇉s (i1 + i2.os, pc+ 1)

s(pc) = MINUS

(i2.i1.os, pc) ⇉s (i1 − i2.os, pc+ 1)

3.5. A VIRTUAL MACHINE FOR EPL 23

Note that the MINUS instruction subtracts the top element of the stack from
the element below, because the subtrahend will be the most recently computed
value and therefore appears on top of the stack, whereas the minuend has been
computed before the subtrahend, and thus appears below it on the stack.

With this in mind, the remaining rules are straightforward.

s(pc) = TIMES

(i2.i1.os, pc) ⇉s (i1 · i2.os, pc+ 1)

s(pc) = DIV

(i2.i1.os, pc) ⇉s (i1/i2.os, pc+ 1)

s(pc) = AND

(b2.b1.os, pc) ⇉s (b1 ∧ b2.os, pc+ 1)

s(pc) = OR

(b2.b1.os, pc) ⇉s (b1 ∨ b2.os, pc+ 1)

s(pc) = NOT

(b.os, pc) ⇉s (¬b.os, pc+ 1)

s(pc) = LT

(i2.i1.os, pc) ⇉s (i1 < i2.os, pc+ 1)

s(pc) = GT

(i2.i1.os, pc) ⇉s (i1 > i2.os, pc+ 1)

s(pc) = EQ

(i2.i1.os, pc) ⇉s (i1 ≡ i2.os, pc+ 1)

Note that the behavior of the transition function is entirely determined by
the instruction, to which pc points. Like the dynamic semantics ֌ of ePL, the
evaluation gets stuck if none of the rules apply, which is the case for division by

24 CHAPTER 3. THE LANGUAGE EPL

zero.
The starting configuration of the machine is the pair (〈〉, 0), where 〈〉 is the

empty operand stack. The end configuration of the machine is reached, when
s(pc) = DONE. The result of the computation can be found on top of the operand
stack of the end configuration. The result of a computation of machine Ms is
denoted by R(Ms) and formally defined as

R(Ms) = v, where (〈〉, 0) ⇉∗

s
(〈v.os〉, pc), and s(pc) = DONE

Example 3.12 The execution of the eVML program

[LDCI 10, LDCI 20, PLUS, LDCI 6, TIMES, DONE]

is represented by the following sequence of states:

(〈〉, 0) ⇉ (〈10〉, 1) ⇉ (〈20, 10〉, 2) ⇉

(〈30〉, 3) ⇉ (〈6, 30〉, 4) ⇉ (〈180〉, 5)

At this point, the machine has reached an end configuration, because s(5) =
DONE. The result of the computation is therefore 180.

3.5.4 Correctness of the ePL Implementation

Having defined eVML and the compilation from ePL to eVML formally, we
could ask the question of correctness of the compilation-based implementation
of ePL as follows.

Let E be a well-typed expression in ePL, and v a value, such that E ֌ v.
Does an instruction sequence s exist such that E ։ s, and R(Ms) = v.

In Chapter 8, we shall answer this question for the virtual-machine based
implementation of simPL, a superset of ePL.

3.5.5 Implementing a Virtual Machine for ePL in Java

The following Java program shows the general structure of our machine. It
consists of a while loop, which contains a switch statement for executing in-
structions. The registers pc and os are represented by Java variables pc and os

to which the interpreter loop has access.

public class VM {

public static Value run(INSTRUCTION[] instructionArray) {

int pc = 0;

Stack os = new Stack();

loop:

while (true) {

INSTRUCTION i = instructionArray[pc];

switch (i.OPCODE) {

case OPCODES.LDCI:

3.5. A VIRTUAL MACHINE FOR EPL 25

os.push(new IntValue(i.VALUE));

pc++;

break;

case OPCODES.PLUS:

os.push(new IntValue(

os.pop().value +

os.pop().value));

pc++;

break;

.

.

.

case OPCODES.DONE: break loop;

}

}

return os.pop();

}

}

The instruction DONE breaks the loop, after which the top of the operand stack
is returned as the result of the program.

3.5.6 Compilation and Execution

In our virtual machine based implementation of ePL, we now have two distinct
phases, namely compilation to eVML code, and execution of the eVML code by
a virtual machine.

If we choose to directly execute the instructions stored in the instruction ar-
ray, we can still view the entire execution of ePL program as an interpreter. The
interpreter uses compilation, which is an internal detail of its implementation.
According to this view, the corresponding T-diagrams are as follows.

26 CHAPTER 3. THE LANGUAGE EPL

ePL

Java Java JVM

x86

-

x86

ePL

JVM

bill

ePL

ePL

JVM

JVM

x86

x86

Instead of directly executing the instructions, we can instead store the in-
struction array in a file (in Java easily done using an ObjectOutputStream).
This amounts to a ePL compiler, which translates ePL files to eVML files.
Since the compiler is written in Java, we first need to translate it to JVM code.

ePL eVML

Java

-

Java JVM

x86

-

x86

ePL eVML

JVM

-

The machine loads a given eVML file and executes its eVML code. Thus the
machine acts as an emulator for eVML. Since it is also implemented in Java, we
translate it to JVM code as follows.

3.5. A VIRTUAL MACHINE FOR EPL 27

eVML

Java Java JVM

x86

-

x86

eVML

JVM

Finally, we are compiling and executing our ePL program bill.epl, as depicted
in the following T-diagrams.

bill

ePL ePL eVML

JVM

-

JVM

x86

x86

bill

eVML

bill

eVML

eVML

JVM

JVM

x86

x86

Example 3.13 Using the compiler eplc and the emulator epl, both written in

Java, we can execute a given ePL program bill.epl as follows:

> javac eplc.java

> javac epl.java

> java eplc bill.epl

28 CHAPTER 3. THE LANGUAGE EPL

> ls bill.*

bill.epl bill.evml

> java epl bill

249

Bibliography

[Sch88] David A. Schmidt. Denotational Semantics—A Methodology for Lan-

guage Development. Wm. C. Brown Publishers, Dubuque, Iowa, 1988.

29

30 BIBLIOGRAPHY

Bibliography

[Sch88] David A. Schmidt. Denotational Semantics—A Methodology for Lan-

guage Development. Wm. C. Brown Publishers, Dubuque, Iowa, 1988.

31

