
CS4215—Programming Language

Implementation

Martin Henz

Thursday 26 January, 2012

2

Chapter 4

The Language simPL

In this chapter, we are extending the language ePL in order to provide a more
powerful programming language. In particular, we extend ePL by the following
features.

• conditional expressions,

• function definition and application, and

• recursive function definitions.

The language simPL allows us to study various styles of language implementa-
tion, and allows us to introduce the important notion of type safety in detail.

4.1 The Syntax of simPL

We divide the syntax of simPL into two categories, types and expressions. The
set of types is the least set that satisfies the following rules.

int bool

t1 · · · tn t

t1* · · · *tn -> t

The set of expressions is the least set that satisfies the following rules, where x

ranges over a countably infinite set of identifiers V , n ranges over the integers,
p1 ranges over the set of unary primitive operations P1 = {\}, and p2 ranges
over the set of binary primitive operations P2 = {|,&,+, -,*,/, =,>,<}.

x n true false

3

4 CHAPTER 4. THE LANGUAGE SIMPL

E

p1[E]

E1 E2

p2[E1, E2]

E E1 E2

if E then E1 else E2 end

E E1 · · · En

(E E1 · · ·En)

E

fun {t1* · · · *tn -> t} x1 · · ·xn -> E end

if t1, . . . , tn and t are types, n ≥ 1. The identifiers x1, . . . , xn must be pairwise
distinct.

E

recfun f {t1* · · · *tn -> t} x1 · · ·xn -> E end

if t1, . . . , tn and t are types, n ≥ 1. The identifiers f, x1, · · · , xn must be pairwise
distinct.
We shall maintain the meaning given to the primitive operators in ePL for
simPL.

4.2 Syntactic Conventions

Similar to ePL, we introduce syntactic conventions that can be used in actual
simPL programs:

• We can use parentheses in order to group expressions and types together.

• We use the usual infix and prefix notation for operators. The binary
operators are left-associative and the usual precedence rules apply such
that

x + x * y > 10 - x

stands for

>[+[x,*[x,y]],-[10,x]]

• The type constructor -> is right-associative, so that the type

int -> int -> int

is equivalent to
int -> (int -> int)

4.3. LET AS ABBREVIATION 5

Thus, the function

fun {int -> int -> int} x ->

fun {int -> int} y -> x + y end

end

takes an integer x as argument and returns a function, whereas the function

fun {(int -> int) -> int} f -> (f 2) end

takes a function f as argument and returns an integer.

4.3 Let As Abbreviation

We introduce the following convenient notation to allow for the introduction of
local identifiers.

let {t1} x1 = E1 · · · {tn} xn = En in {t} E end

stands for

(fun {t1* · · · *tn -> t} x1 · · ·xn -> E end E1 · · ·En)

Example 4.1 Let us say we want to use the identifier AboutPi, which should
stand for the integer 3, and the identifier Square, which should be the square
function, inside an expression. For example, to calculate the surface of the earth
in square kilometers, the average radius of the earth being 6371 km, we would
like to write 4 * AboutPi * {Square 6371}. Using let, we can do so, as
shown below.

let {int} AboutPi = 3

{int -> int} Square =

fun {int -> int} x -> x * x end

in {int} 4 * AboutPi * (Square 6371)

end

According to the definition of let, this expression is an abbreviation for

(fun {int * (int -> int) -> int}

AboutPi Square

->

4 * AboutPi * (Square 6371)

end

3

fun {int -> int} x -> x * x end)

Exercise 4.1 Translate the following Java functions into simPL with let.

6 CHAPTER 4. THE LANGUAGE SIMPL

class TimesFour {
public s ta t ic int t imes two (int x) {

return x + x ;
}
public s ta t ic int t ime s f ou r (int x) {

return t imes two (t imes two (x)) ;
}
public s ta t ic void main (S t r i n g [] a rg s) {

System . out . p r i n t l n (t ime s f ou r (1 0)) ;
}

}

Translate the result to simPL without let, using the translation scheme above.

In the rest of this chapter, we are freely making use of let in examples, knowing
that it is just convenient syntax for function definition and application do not
need to cover let expressions in our formal treatment of simPL.

4.4 Some simPL Programming

Example 4.2 (Power function) In simPL, the power function, which raises
a given integer x to the power of the integer y, can be defined as follows:

recfun power {int * int -> int}

x y ->

if y = 0

then 1

else x * (power x y - 1)

end

end

Using the let syntax, we can use the power function inside an expression E as
follows:

let {int * int -> int}

power = recfun power {int * int -> int}

x y ->

if y = 0

then 1

else x * (power x y - 1)

end

end

in {int}

(power 17 3)

end

Note the need to declare the identifier power twice, which is a syntactic quirk
of simPL. We could use a different identifier in the recfun expression without
changing the meaning of the program:

4.4. SOME SIMPL PROGRAMMING 7

let {int * int -> int}

power = recfun mypower {int * int -> int}

x y ->

if y = 0

then 1

else x * (mypower x y - 1)

end

end

in {int}

(power 17 3)

end

Example 4.3 (General iteration) We can generalize the recursion over one
integer by passing the function to be applied at each step and the value for 0 as
arguments.

let {int * int * (int * int -> int) * int -> int}

recurse

= recfun recurse

{int * int * (int * int -> int) * int -> int}

x y operation initvalue

-> if y = 0 then initvalue

else (operation x

(recurse x y - 1 operation initvalue))

end

end

in

...

(recurse 2 3 fun {int * int -> int}

x z -> x * z

end

1)

...

(recurse 2 3 fun {int * int -> int}

x z -> x + z end

0)

...

(recurse 2 3 fun {int * int -> int}

x z -> z / x end

128)

...

end

The three applications of recurse compute the numbers 8, 6 and 16, respec-
tively.

8 CHAPTER 4. THE LANGUAGE SIMPL

Chapter 5

Dynamic Semantics of

simPL

In order to define how programs are executed, we use an approach similar to
evaluation of ePL expressions. We are going to define a contraction, and based
on this contraction, we define inductively a relation that tells us how to evaluate
simPL programs. However, one-step evaluation is more restricted than evalua-
tion in ePL, because it has to be deterministic, which means there has to be at
most one way to perform an evaluation step. We will then define evaluation as
the reflexive transitive closure of one-step evaluation.

5.1 Values

The goal of evaluating an expression is to reach a value, an expression that
cannot be further evaluated. In simPL, a value is either an integer, or a boolean
value or a function (fun · · · -> · · · end or recfun · · · -> · · · end). In the following
rules defining the contraction relation >simPL for simPL, we denote values by
v. That means any rule in which v appears is restricted to values in the place
of v.

Note that function values can have executable expressions in their body. For
example,

fun {int -> int} x -> 3 * 4 end

is a value although its body 3 * 4 is not a value. So in contrast to ePL,
where contraction can be applied to any subexpression, the dynamic semantics
of simPL prevents evaluation within the bodies of function definitions. This
notion of values conforms with the intuition that the body of a function gets
executed only when the function is applied.

9

10 CHAPTER 5. DYNAMIC SEMANTICS OF SIMPL

5.2 Contraction

As for ePL, we define contraction rules for each primitive operation p and each
set of values v1, v2 such that the result of applying p to v1 and v2 is a value v.

p1[v1] >simPL v

[OpVals]

p2[v1, v2] >simPL v

[OpVals]

Contraction of conditionals distinguishes the cases that the condition is true or
false.

if true then E1 else E2 end >simPL E1

[IfTrue]

if false then E1 else E2 end >simPL E2

[IfFalse]

In order to define the contraction of function application, we need two further
definitions; free identifiers and substitution.

Free Identifiers

We need to be able to find out what identifiers in a given simPL expression are
bound by enclosing function definitions, and what identifiers are free, e.g. not
bound. For example, the identifier square occurs free in

(fun {int -> int} x -> 4 * (square x) end 3)

because it is not declared by any surrounding fun or recfun expression, whereas
the identifier x is bound by the surrounding fun expression.

Formally, we are looking for a relation

⊲⊳: simPL× 2V

that defines the set of free identifiers of a given expression. For example,
4 * (square x) ⊲⊳ {square,x}, which we read as “the set of free identifiers
of the expression 4 * (square x) is {square,x}.

The relation ⊲⊳ is defined by the following rules:

x ⊲⊳ {x} n ⊲⊳ ∅ true ⊲⊳ ∅ false ⊲⊳ ∅

5.2. CONTRACTION 11

E ⊲⊳ X

p1[E] ⊲⊳ X

E1 ⊲⊳ X1 E2 ⊲⊳ X2

p2[E1, E2] ⊲⊳ X1 ∪X2

E1 ⊲⊳ X1 E2 ⊲⊳ X2 E3 ⊲⊳ X3

if E1 then E2 else E3 end ⊲⊳ X1 ∪X2 ∪X3

E ⊲⊳ X

fun { · } x1 · · ·xn -> E end ⊲⊳ X − {x1, . . . , xn}

E ⊲⊳ X

recfun { · } f x1 · · ·xn -> E end ⊲⊳ X − {f, x1, . . . , xn}

Exercise 5.1 Prove that the relation ⊲⊳ is a total function, i.e. for every simPL
expression E, there is exactly one set of identifiers X such that E ⊲⊳ X.

Substitution

In order to carry out a function application, we need to replace all free occur-
rences of the formal parameters in the function body by the actual arguments.
For example, in order to contract the expression

(fun {int -> int} x -> x * x end 4)

we need to replace every free occurrence of x in the body of the function x * x

by the actual parameter 4, leading to the expression 4 * 4.
Formally, substitution is defined by the substitution relation

·[· ← ·]· : simPL× V × simPL× simPL

such that x * x[x ← 4]4 * 4 holds.
In order to define the relation ·[· ← ·]· we employ as usual an inductive

definition using the following rules.

v[v ← E1]E1

for any identifier v

12 CHAPTER 5. DYNAMIC SEMANTICS OF SIMPL

x[v ← E1]x

for any identifier x 6= v

The rules for primitive applications, function applications, and conditionals ap-
ply the substitution to all components. For example, the rule for a one-argument
function application looks like this:

E1[v ← E]E′

1 E2[v ← E]E′

2

(E1 E2)[v ← E](E′

1 E′

2)

The rules for multiple-argument applications, primitive applications and condi-
tionals are left as an exercise.

Exercise 5.2 Give the rule that defines substitution for conditionals.

The rules for definition of unary functions are as follows.

fun { · } v->E end [v ← E1]fun { · } v -> E end

E [v ← E1]E
′ x 6= v E1 ⊲⊳ X1 x 6∈ X1

fun { · } x->E end [v ← E1] fun { · } x -> E′ end

E1 ⊲⊳ X1 x ∈ X1 E ⊲⊳ X

E[x← z]E′ E′[v ← E1]E
′′ x 6= v

fun { · } x->E end [v ← E1] fun { · } z -> E′′ end

where we choose z such that z 6∈ X1 ∪X.

Example 5.1 The following substitutions hold:

• fun {int -> int} factor -> factor * 4 * y end

[factor← x + 1]
fun {int -> int} factor -> factor * 4 * y end

• fun {int -> int} factor -> factor * 4 * y end

[y← x + 1]
fun {int -> int} factor -> factor * 4 * (x + 1) end

5.2. CONTRACTION 13

• fun {int -> int} factor -> factor * 4 * y end

[y← factor + 1]
fun {int -> int} newfactor ->

newfactor * 4 * (factor + 1) end

end

Exercise 5.3 Give the rule for substitution of ternary recursive function defi-
nition.

Exercise 5.4 Is substitution functional in its first three arguments, i.e. for any
given expressions E1 and E2, and identifier x, is there is exactly one expression
E3 such that E1[x← E2]E3 holds?

Contraction of Function Application

We define function application of unary (non-recursive) functions as follows.

E[x← v]E′

(fun { · } x -> E end v) >simPL E′

[CallFun]

Note that the arguments of a function application must be values (denoted by
the letter v), before the function is applied.

In order to define contraction of an application of a recursive function, we
need to make sure that the recursive function is used, when the body is evalu-
ated. We do this by replacing every free occurrence of the function identifier by
the definition of the function.

E[f ← recfun { · } f x -> E end]E′ E′[x← v]E′′

(recfun f x -> E end v) >simPL E′′

[RF]

Exercise 5.5 Note that this rule first replaces f by the recursive function defi-
nition, and then x by the argument v. Consider a version of the rule that does
it the other way around. Would you always get the same result?

Application of Functions with Multiple Parameters

The rules presented so far only handle functions (and recursive functions) with
single arguments. A simple way to handle multiple argument functions is by
treating them as an abbreviation for single-argument functions, in the following
way:

14 CHAPTER 5. DYNAMIC SEMANTICS OF SIMPL

(· · · ((fun {t1 -> t2 -> · · · -> tn -> t } x1 ->

fun {t2 -> · · · -> tn -> t } x2 -> · · · ->
fun {tn -> t} xn ->

E

end

· · ·
end

end

v1)

v2)
...
vn)

>simPL E′

(fun { t1 ∗ · · · ∗ tn -> t } x1 · · ·xn -> E end v1 · · · vn) >simPL E′

[MP]

5.3 One-Step Evaluation

We define one-step evaluation 7→simPL inductively by the following rules.

The base case for evaluation is contraction.

E >simPL E′

E 7→simPL E′

[Contraction]

The application of primitive operations is evaluated using the following rules.

E 7→simPL E′

p1[E] 7→simPL p1[E
′]

[OpArg1]

E1 7→simPL E′

1

p2[E1, E2] 7→simPL p2[E
′

1, E2]

[OpArg2]

E2 7→simPL E′

2

p2[v1, E2] 7→simPL p2[v1, E
′

2]

[OpArg3]

Note that for the second argument of a primitive application to be evaluated,
the first argument must be a value. That means that applications are evaluated
from left to right. In conditionals, only the condition can be evaluated.

5.4. EVALUATION 15

E 7→simPL E′

if E then E1 else E2end 7→simPL if E′ then E1 else E2 end

[IfTest]

Eventually, the condition will evaluate to true or false, at which point one of
the two Contraction rules applies; see Section 5.2.

Function applications are also evaluated from left to right, i.e. first the
function position and then the argument positions from left to right.

E 7→simPL E′

(E E1 . . . En) 7→simPL (E′ E1 . . . En)

[AppFun]

Ei 7→simPL E′

i

(v v1 . . . vi−1 Ei . . . En) 7→simPL (v v1 . . . vi−1 E′

i
. . . En)

[AppArg]

This completes the definition of one-step evaluation. Note that there no rule
for function definitions. The extremal clause for one-step evaluation implies
that no contractions can be carried out in function bodies.

5.4 Evaluation

As in the dynamic semantics of ePL, the evaluation relation 7→simPL
∗ is defined

as the reflexive transitive closure of one-step evaluation 7→simPL.

Lemma 5.1 For every closed expression E, there exists at most one expression
E′ such that E 7→simPL E′, up to renaming of bound identifiers.

Proof: By induction over the structure of E. �

Lemma 5.1 states that 7→simPL is a partial function. This means that eval-
uation is deterministic; there exists only one place in any expression, where
evaluation can apply a contraction.

Lemma 5.2 For every closed expression E, there exists at most one value v

such that E 7→simPL
∗ v, up to renaming of bound identifiers.

Proof: Let us assume that there are expressions v1 and v2 such that for a
given expression E, we have E 7→simPL

∗v1 and E 7→simPL
∗v2. From Lemma 1

and the definition of reflexive transitive closure follows that v1 7→simPL
∗v2 (or

v2 7→simPL
∗v1, in which case the following argument is similar). According to

the definition of values, the expression v1 could be an integer, a boolean or

16 CHAPTER 5. DYNAMIC SEMANTICS OF SIMPL

a (possibly recursive) function. In none of these cases, there is a rule in the
definition of 7→simPL with which to evaluate v1 in one step. According to the
definition of 7→∗

simPL, we must therefore have v1 = v2. �

Chapter 6

Static Semantics of simPL

Similar to ePL, not all expressions in simPL make sense. For example,

if fun {int -> int} x -> x end then 1 else 0 end

does not make sense, because fun {int -> int} x -> x end is a function,
whereas the conditional test expects a boolean value as first component. We
say that the expression is ill-typed, because a typing condition is not met. Ex-
pressions that meet these conditions are called well-typed. Section 6.1 uses a
typing relation to identify well-typed simPL expressions. What properties do
well-typed expressions have? Section 6.2 answers this question by showing that
the evaluation of well-typed expressions enjoys specific properties.

6.1 Well-Typedness of simPL Programs

For simPL, well-typedness of an expression depends on the context in which
the expression appears. The expression x + 3 may or may not be well-typed,
depending on the type of x. Thus in order to formalize the notion of a context,
we define a type environment, denoted by Γ, that keeps track of the type of
identifiers appearing in the expression. More formally, the partial function Γ
from identifiers to types expresses a context, in which an identifier x is associated
with type Γ(x).

We define a relation Γ[x← t]Γ′ on type environments Γ, identifiers x, types
t, and type environments Γ′, which constructs a type environment that behaves
like the given one, except that the type of x is t. More formally, if Γ[x ← t]Γ′,
then Γ′(y) is t, if y = x and Γ(y) otherwise. Obviously, this uniquely identifies
Γ′ for a given Γ, x, and t, and thus the type environment extension relation is
functional in its first three arguments.

The set of identifiers, on which a type environment Γ is defined, is called the
domain of Γ, denoted by dom(Γ).

Note that we used the same notation ·[· ← ·]· to denote substitution in
Section 6.2. It will always be clear from the context, which operation is meant.

17

18 CHAPTER 6. STATIC SEMANTICS

Example 6.1 The empty typing relation Γ = ∅ is not defined for any identifier.
We can extend the empty environment ∅ with type bindings by ∅[AboutPi ←
int]Γ′, where Γ′ is an environment that can be applied only to the identifier
AboutPi; the result of Γ′(AboutPi) is the type int. Similarly, we can define
Γ′′ by Γ′[Square ← int -> int]Γ′′. The type environment Γ′′ may be applied
to either the identifier AboutPi, or to the identifier Square. Thus, dom(Γ′′) =
{AboutPi, Square}.

The set of well-typed expressions is defined by the ternary typing relation, writ-
ten Γ ⊢ E : t, where Γ is a type environment such that E ⊲⊳ X and X ⊆ dom(Γ).
This relation can be read as “the expression E has type t, under the assump-
tion that its free identifiers have the types given by Γ”. When E has no free
identifiers (we say E is closed), we can write E : t instead of ∅ ⊢ E : t.

Example 6.2 Continuing Example 6.1, we will define the typing relation such
that the following expressions hold:

• Γ′ ⊢ AboutPi ∗ 2 : int

• Γ′′ ⊢ fun{int -> int} x -> AboutPi * (Square 2) end : int -> int

but:

• Γ′ ⊢ fun {int -> int} x -> AboutPi * (Square 2) end : int -> int

does not hold, because Square occurs free in the expression, but the type
environment Γ′ to the left of the ⊢ symbol is not defined for Square.

• Γ ⊢ true + 1 : t
does not hold for any type environment Γ or type t, because in the expres-
sion, integer addition is applied to a boolean value.

• Γ ⊢ 3 + 1 * 5 : bool
does not hold for any type environment Γ, because the expression has type
int, whereas bool is given after the : symbol.

We define the typing relation inductively as follows.
The type of an identifier needs to be provided by the type environment.

Γ ⊢ x : Γ(x)

[VarT]

If Γ(x) is not defined, then this rule is not applicable. In this case, we say that
there is no type for x derivable from the assumptions Γ.

Constants get their obvious type. For any type environment Γ and any
integer n, the following rules hold:

Γ ⊢ n : int

[NumT]

Γ ⊢ true : bool

[TrueT]

6.1. WELL-TYPEDNESS 19

Γ ⊢ false : bool

[FalseT]

For each primitive operation in simPL, we have exactly one rule.

Γ ⊢ E : bool

Γ ⊢ \[E] : bool

[Prim1]

For each binary primitive operation p2, we have a rule of the following form:

Γ ⊢ E1 : t1 Γ ⊢ E2 : t2

Γ ⊢ p2[E1, E2] : t

[PrimT]

where the types t1, t2, t are given by the following table.
p t1 t2 t

+ int int int

- int int int

* int int int

/ int int int

& bool bool bool

| bool bool bool

= int int bool

< int int bool

> int int bool

Important for typing conditionals is that the “then” and the “else” clauses get
the same type.

Γ ⊢ E : bool Γ ⊢ E1 : t Γ ⊢ E2 : t

Γ ⊢ if E then E1 else E2 end : t

[IfT]

For function definition, we introduce the following rules.

Γ1[x1 ← t1]Γ2 · · ·Γn[xn ← tn]Γn+1 Γn+1 ⊢ E : t

Γ1 ⊢ fun {t1* · · · *tn -> t} x1 . . . xn -> E end : t1* · · · *tn -> t

[FunT]

Thus for a function definition to be well-typed under the assumptions given by
type environment Γ1, the body of the function needs to be well-typed under the
assumptions given by an extended environment Γn+1, where Γn+1 extends Γ1

with bindings of the function’s formal parameters to its declared types. Fur-
thermore, the type of the body needs to coincide with the declared return type
of the function.

20 CHAPTER 6. STATIC SEMANTICS

Example 6.3 For the environment Γ′ given in Example 6.1, the following holds:

Γ′ ⊢ fun {int -> bool} x -> AboutPi > x end : int -> bool

since

Γext ⊢ AboutPi > x : bool

holds, where Γext extends Γ′ with a binding of x to the declared type int:

Γ′[x← int]Γext

Furthermore, the type of the body bool coincides with the declared return type
of the function.

Similarly, we have the following typing rule for recursive function definition.

Γ[f ← t1* · · · *tn -> t]Γ1 Γ1[x1 ← t1]Γ2 · · ·Γn[xn ← tn]Γn+1 Γn+1 ⊢ E : t

Γ ⊢ recfun f {t1* · · · *tn -> t} x1 . . . xn -> E end : t1* · · · *tn -> t

[RecFunT]

Here, we find a type t for the body of the function under the assumption that
the function identifier has the type that is declared for the function.

Finally, we have the following rule for function application.

Γ ⊢ E : t1* · · · *tn -> t Γ ⊢ E1 : t1 · · · Γ ⊢ En : tn

Γ ⊢ (E E1 · · ·En) : t

[ApplT]

The type of the operator needs to be a function type with the right number of
parameters, and the type of every argument needs to coincide with the corre-
sponding parameter type of the function type. If all these conditions are met,
the type of the function application is the same as the return type of the function
type that is the type of the operator.

This completes the definition of the typing relation. Now we can define what
it means for an expression to be well-typed.

Definition 6.1 An expression E is well-typed, if there is a type t such that
E : t.

Note that this definition of well-typedness requires that a well-typed expres-
sion has no free identifiers.

Example 6.4 The following proof shows that the typing relation holds for the
expression ∅ ⊢ 2 ∗ 3 > 7 : bool.

6.1. WELL-TYPEDNESS 21

∅ ⊢ 2 : int ∅ ⊢ 3 : int

∅ ⊢ 2*3 : int ∅ ⊢ 7 : int

∅ ⊢ 2*3>7 : bool

Example 6.5 The following proof shows that the typing relation holds for the
expression

∅ ⊢ (fun int -> int x -> x+1 end 2) : int

The reader may annotate each rule application with the name of the applied rule
as in the previous example.

∅[x← int]Γ

Γ ⊢ x : int Γ ⊢ 1 : int

Γ ⊢ x+1 : int

∅ ⊢ fun {int -> int} x -> x+1 end : int -> int ∅ ⊢ 2 : int

∅ ⊢ (fun {int -> int} x -> x+1 end 2) : int

Lemma 6.1 For every expression E and every type assignment Γ, there exists
at most one type t such that Γ ⊢ E : t.

Proof: We prove this statement using structural induction over the given
expression E. That means we consider the following property P of simPL
expressions E:

For every type assignment Γ, there exists at most one type t such
that Γ ⊢ E : t holds.

22 CHAPTER 6. STATIC SEMANTICS

If we are able to show that this property (taken as a set) meets all rules given
for simPL expressions E, we know that simPL ⊆ P , which means that every
element of simPL has the property P . So let us look at the rules defining simPL.

•
x

The only typing rule that applies in this case is rule VarT (page 18). Since
type environments are functions, it is immediately clear that for every type
environment Γ, there can be at most one type for x, namely Γ(x).

•
n

,

true

,

false

The only typing rules that apply in these cases are the respective rules for
typing of constants, NumT, TrueT and FalseT (page 18). They assign a
unique type (int for numbers, bool for true and false) to the constant
expressions.

•
E

p1[E]

,

E1 E2

p2[E1, E2]

We need to show that our property P meets the rules for simPL primitive
operations. For our only unary operation \, we need to show:

If for every type assignment Γ, there exists at most one type t

such that Γ ⊢ E : t holds, then for every type assignment Γ′,
there exists at most one type t′ such that Γ′ ⊢ \[E] : t′ holds.

The only typing rule that applies in this case is the rule Prim1. The only
possible type for \[E] according to this rule is bool.

The argument for the binary primitive operations is similar.

•

E E1 E2

if E then E1 else E2 end

The only typing rule that applies here is the rule IfT.

Γ ⊢ E : bool Γ ⊢ E1 : t Γ ⊢ E2 : t

Γ ⊢ if E then E1 else E2 end : t

[IfT]

It is clear from this rule that if there is at most one type t for E1, then there
is at most one type for the entire conditional if E then E1 else E2 end,
namely the same type t.

6.1. WELL-TYPEDNESS 23

•

E E1 · · · En

(E E1 · · ·En)

The only rule that applies here is the rule ApplT:

Γ ⊢ E : t1* · · · *tn -> t Γ ⊢ E1 : t1 · · · Γ ⊢ En : tn

Γ ⊢ (E E1 · · ·En) : t

This rule applies only if E has a type of the form t1* · · · *tn -> t. It is
clear from this rule that if there is only one such type t1* · · · *tn -> t for
E for any Γ, then there is at most one type for the entire application,
namely t.

•
E

fun {t1* · · · *tn -> t} x1 · · ·xn -> E end

The only rule that applies in this case is the rule FunT (page 19), which
states that the type of a function definition can only be its declared type.
Thus, our property P meets the rule. Note that the do not even need to
use the assumption that the body E has property P .

•
E

recfun f {t1* · · · *tn -> t} x1 · · ·xn -> E end

Similar to the case of function definition; the only rule that applies is Rec-
FunT, which assigns the declared type to the recursive function definition.

�

Since for each expression, there is at most one rule that applies, we can invert
the rules and state the following theorem.

Theorem 6.1

1. If Γ ⊢ x : t, then Γ(x) = t.

2. If Γ ⊢ n : t, then t = int, for any integer n, and similarly for true and
false.

3. If Γ ⊢ if E then E1 else E2 end : t, then Γ ⊢ E : bool, Γ ⊢ E1 : t, and
Γ ⊢ E2 : t.

24 CHAPTER 6. STATIC SEMANTICS

4. If Γ1 ⊢ fun {t1* · · · *tn -> t} x1 . . . xn -> E end : t1* · · · *tn -> t, then
there exist Γ2 . . .Γn+1 such that Γ[x1 ← t1]Γ2 · · ·Γn[xn ← tn]Γn+1 and
Γn+1 ⊢ E : t.

5. If Γ ⊢ recfun f {t1* · · · *tn -> t} x1 . . . xn -> E end : t1* · · · *tn -> t,
then there exist Γ1 . . .Γn+1 such that Γ[f ← t1* · · · *tn -> t]Γ1, Γ1[x1 ←
t1]Γ2 · · ·Γn[xn ← tn]Γn+1, and Γn+1 ⊢ E : t.

6. If Γ ⊢ (E E1 . . . En) : t, then there exist types t1, . . . , tn such that Γ ⊢ E :
t1* · · · *tn -> t and Γ ⊢ E1 : t1, . . .Γ ⊢ En : tn.

This theorem means that we can often infer the type of a given expression by
looking at the form of the expression. Some programming languages exploit
this fact by avoiding (most) type declarations for the user. The programming
system carries out type inference and calculates the required type declarations.
Type checking for such languages is done at the same time as type inference.

The following properties of the typing relation are useful for reasoning on
types.

Lemma 6.2 Typing is not affected by “junk” in the type assignment. If Γ ⊢
E : t, and Γ ⊂ Γ′, then Γ′ ⊢ E : t.

Lemma 6.3 Substituting an identifier by an expression of the same type does
not affect typing. If Γ[x ← t′]Γ′, Γ′ ⊢ E : t, and Γ ⊢ E′ : t′, then Γ ⊢ E′′ : t,
where E[x← E′]E′′.

6.2 Type Safety of simPL

Type safety is a property of a given language with a given static and dynamic se-
mantics. It says that if a program of the languge is well-typed, certain problems
are guaranteed not to occur at runtime.

What do we consider as “problems”? One kind of problem is that we would
get stuck in the process of evaluation. That is the case when no evaluation rule
applies to an expression, but the expression is not a value. We would like to be
able to guarantee to make progress in evaluation. A second kind of problem is
that the type changes as evaluation proceeds. For example, if the user declares
that the result of a program should be of type int, then the evaluation cannot
return a result of type bool. This property is called preservation.

The notion of type safety formalizes these two properties.

Definition 6.2 A programming language with a given typing relation · · · ⊢ · · · :
· · · and one-step evaluation 7→ is called type-safe, if the following two conditions
hold:

1. Preservation. If E is a well-typed program with respect to · · · ⊢ · · · : · · ·
and E 7→ E′, then E′ is also a well-typed program with respect to ⊢.

6.2. TYPE SAFETY OF SIMPL 25

2. Progress. If E is a well-typed program, then either E is a value or there
exists a program E′ such that E 7→ E′.

Is simPL type-safe? Neither preservation nor progress can hold without some
assumptions on the primitive operations of the given language. For preservation,
we must assume that if the result of applying an operation p to arguments
v1, . . . , vn is v and p[v1, . . . , vn] : t then v : t. Fortunately, this is the case for all
operators of the language simPL.

Theorem 6.2 (Preservation) If for a simPL expression E and some type t

holds E : t and if E 7→simPL E′, then E′ : t.

Proof: The proof is by structural induction on the rules defining simPL. �

Lemma 6.4 (Canonical Forms) Suppose that the simPL expression v is a
closed, well-typed value and v : t.

1. If t = bool, then either v = true or v = false.

2. If t = int, then v = n for some n.

3. If t = t1* · · · *tn -> t′, then
v = fun {t1* · · · *tn -> t′} x1 . . . xn -> E end,
for some x1, . . . , xn and E, or
v = recfun f {t1* · · · *tn -> t′} x1 . . . xn -> E end,
for some x1, . . . , xn and E and f .

Proof: The proof is by inspection of the typing rules. For example for the
first statement, we look at all rules that assign types to values (TrueT, FalseT,
NumT, FunT and RecFunT), and find that the only cases where the type is
bool are TrueT and FalseT. �

For progress, we must assume that if p[v1, . . . , vn] is well-typed, then there exists

a value v such that v is the result of applying p to the arguments v1, . . . , vn.
This means that primitive operations are not allowed to be undefined on some
arguments. Unfortunately, this is not the case for all operators of simPL. Integer
division is not defined on 0 as first argument. So, let simPL’ be the result
of restricting simPL by excluding integer division from the set of primitive
operators.

Theorem 6.3 (Progress) If for a simPL’ expression E holds E : t for some
type t, then either E is a value, or there exists an expression E′ such that
E 7→simPL’ E

′.

Proof: The proof is by induction on the rules defining simPL’. �

The type safety of simPL’ ensures that evaluation of a well-typed simPL’ ex-
pression “behaves properly”, which means does not get stuck. Can we say the

26 CHAPTER 6. STATIC SEMANTICS

reverse by claiming that any expression for which the dynamic semantics pro-
duces a value is well-typed? If this was the case, the type system for simPL’
would do a perfect job by statically identifying exactly those simPL’ expressions
that get stuck. Unfortunately, this is not the case. A simple counter-example
is the expression

if true then 1 else false end

This expression evaluates to 1, but is not well-typed. In Chapter 12, we shall
see that it is not possible to have a perfect type system for languages like simPL’
(or simPL).

