
CS4215—Programming Language

Implementation

Martin Henz

Friday 10 February, 2012

2

Chapter 8

Virtual Machines

8.1 Motivation

The semantic frameworks that we have seen so far suffer from two drawbacks.
Firstly, they rely on complex mathematical formalism, and secondly, they do
not properly account for the space and time complexity of programs.

Complex mathematical formalism Our improved understanding of the
language simPL with respect to parameter passing, identifier scoping and error
handling was achieved by employing a considerable mathematical machinery,
using substitution for dynamic semantics and complex semantic domains for
denotational semantics. In their implementation, we made heavy use of Java.
We used classes with member functions, recursion etc. Such an approach is ques-
tionable; we explained the high-level language simPL by using either a complex
mathematical construction or another high-level programming language, Java.
Worse: in our denotational semantics, we use conditionals in Java in order to
define conditionals in simPL, recursion in Java in order to define recursion in
simPL etc. How are we going to explain Java? By reduction to another high-
level programming language?

Lack of realism The substitution operation that we employed in dynamic

semantics is far away from what happens in real programming systems. We
can therefore not hope to properly account for the space and time complexity
of programs using dynamic semantics. The aim in denotational semantics is to
describe the meaning of programs as mathematical values, and not as a process,
and therefore denotational semantics would have to be significantly modified to
account for the resources that executing programs consume.

In this chapter, we are aiming for a simpler, lower-level description of the
meaning of simPL programs, which will allow us to realistically capture the
runtime of programs and some aspects of their space consumption. To this aim,

3

4 CHAPTER 8. VIRTUAL MACHINES

we are going to translate simPL to a machine language. We will formally specify
a machine for executing machine language code, and describe its implementation
in Java.

In order to explain the virtual-machine-based implementation of simPL, we
are taking an approach similar to the previous chapter, introducing the machine
step-by-step for sublanguages of simPL. This allows us to concentrate on the
individual constructs and not get lost in the complexity of the resulting machine
for full simPL.

• simPLa is a calculator language similar to simPL0 (Sections 8.2 through 8.6);

• simPLb adds division (Section 8.7);

• simPLc adds conditionals (Section 8.8);

• simPLd adds function definition and application (Sections 8.9 and 8.10);

• simPLe adds recursive function definition (Section 8.11).

Section 8.12 gives an alternative meaning to some recursive function calls. In
each of these sections, we describe the concepts using mathematical notation,
as well as in terms of an implementation in Java.

Finally, Section 8.13 describes the overall process of executing simPL pro-
grams using a virtual machine in terms of T-diagrams.

8.2 The Language simPLa

The language simPLa is defined by the following rules.

n true false

E1 E2

p[E1, E2]

if p ∈ {|, &, +, -, *, =, >, <}.

E

p[E]

if p ∈ {\}.

So far, our semantic frameworks relied on the ability to call functions. That
allowed us to define the semantics of addition by equations of the form

E1 ֌ v1 E2 ֌ v2

+[E1, E2] ֌ v1 + v2

8.3. THE MACHINE LANGUAGE SVMLA 5

More specifically, we relied on the ability to remember to evaluate E2 after
evaluating E1, and then to add the results together. Our high-level notation
hid these details.

The goal of this chapter is to present a framework, in which a simple ma-
chine suffices to execute programs, which will force us to make explicit how we
remember things.

In order to implement simPL in such a low-level setting, we first compile
the given expression to a form that is amenable to the machine. We call the
result of the compilation simPL virtual machine code. The language containing
all simPL virtual machine code programs is called SVML.

For each of the sublanguages simPLa through simPLe, we will introduce a
corresponding machine language SVMLa through SVMLe, respectively.

8.3 The Machine Language SVMLa

SVMLa programs consist of sequences of machine instructions, terminated by
the special instruction DONE.

SVMLa is defined by the rules of this section.

DONE

s

LDCI i . s

s

LDCB b . s

The first rule states that DONE is a valid SVML program. The operator . in the
second and third rules denotes the concatenation of instruction sequences. In
the second and third rules, i stands for elements of the ring of integers, and b
stands for elements of the ring of booleans, respectively. The letters LDCI in
the machine instruction LDCI n stand for “LoaD Constant Integer”. The letters
LDCB in the machine instruction LDCB b stand for “LoaD Constant Boolean”.

The remaining ten rules introduce machine instructions corresponding to
each of the operators in simPLa.

s

PLUS.s

s

MINUS.s

s

TIMES.s

s

AND.s

s

OR.s

s

NOT.s

s

LESS.s

s

GREATER.s

s

EQUAL.s

To clarify that we are dealing with SVML programs, we are separating instruc-
tions with commas and enclosing instruction sequences in brackets.

Example 8.1 The instruction sequence

[LDCI 1, LDCI 2, PLUS, DONE]

represents a valid SVMLa program.

6 CHAPTER 8. VIRTUAL MACHINES

In our Java implementation, we represent instructions as instances of classes,
which implement the INSTRUCTION interface.

public class INSTRUCTION implements Serializable {

public int OPCODE;

}

Each INSTRUCTION carries an OPCODE that uniquely identifies its class. For
example, the class LDCI looks like this.

public class LDCI extends INSTRUCTION {

public int VALUE;

public LDCI(int i) {

OPCODE = OPCODES.LDCI;

VALUE = i;

}

}

For convenience, we store the opcodes in a class OPCODES.

public class OPCODES {

public static final byte

LDCI = 1,

LDCB = 2,

...

}

Example 8.2 Now, we can create the instruction sequence in Example 8.1 as

follows:

INSTRUCTION[] ia = new INSTRUCTION[4];

ia[0] = new LDCI(1);

ia[1] = new LDCI(2);

ia[2] = new PLUS();

ia[3] = new DONE();

8.4 Compiling simPLa to SVMLa

The translation from simPLa to SVMLa is accomplished by a function

։: simPLa→ SVML

which appends the instruction DONE to the result of the auxilary translation
function →֒.

E →֒ s

E ։ s.DONE

8.5. EXECUTING SVMLA CODE 7

The auxiliary translation function →֒ is defined by the following rules.

n ֌N i

n →֒ LDCI i true →֒ LDCB true false →֒ LDCB false

E1 →֒ s1 E2 →֒ s2

E1+E2 →֒ s1.s2.PLUS

E1 →֒ s1 E2 →֒ s2

E1*E2 →֒ s1.s2.TIMES

E1 →֒ s1 E2 →֒ s2

E1&E2 →֒ s1.s2.AND

E1 →֒ s1 E2 →֒ s2

E1|E2 →֒ s1.s2.OR

E →֒ s

\ E →֒ s.NOT

E1 →֒ s1 E2 →֒ s2

E1<E2 →֒ s1.s2.LESS

E1 →֒ s1 E2 →֒ s2

E1>E2 →֒ s1.s2.GREATER

E1 →֒ s1 E2 →֒ s2

E1=E2 →֒ s1.s2.EQUAL

Example 8.3 Using the usual derivation trees, we can show

(1 + 2) * 3 ։ [LDCI 1, LDCI 2, PLUS, LDCI 3, TIMES, DONE], and
1 + (2 * 3) ։ [LDCI 1, LDCI 2, LDCI 3, TIMES, PLUS, DONE].

Observe that the machine code places the operator of an arithmetic ex-
pression after its arguments. This way of writing expressions is called postfix
notation, because the operators are placed after their arguments. It is also
called Reverse Polish Notation, because it is the reverse of the prefix notation,
which is also called Polish Notation in honor of its inventor, the Polish logician
Jan Lukasiewicz.

Our compiler for simPL translates a given simPL expression—as usual rep-
resented by its syntax tree—to an INSTRUCTION array.

Expression simpl=Parse.fromFileName(simplfile);

INSTRUCTION ia[] = Compile.compile(simpl));

8.5 Executing SVMLa Code

The machine that we will use to execute SVMLa programs is a variation of a
push-down automaton. Let us fix a specific program s. The machine Ms that
executes s is given as an automaton that transforms a given machine state to
another state. The machine state is represented by so-called registers. In the

8 CHAPTER 8. VIRTUAL MACHINES

case of SVMLa, we need two registers, called program counter—denoted by the
symbol pc—and operand stack —denoted by the symbol os.

The program counter is used to point to a specific instruction in s, starting
from position 0. For example, if pc = 2, and s is the program [LDCI 1, LDCI 2,
PLUS, LDCI 3, TIMES, DONE], then s(pc) = PLUS.

The operand stack is a sequence of values from Int + Bool. We will use
angle brackets for operand stacks to differentiate them from SVML programs.
For example, os = 〈10, 20, true〉 represents an operand stack with 10 on top,
followed by 20, followed by true.

Now, we can describe the behavior of the machineMs as a transition function
⇉s, which transforms machine states to machine states, and which is defined
by the following twelve rules.

s(pc) = LDCI i

(os, pc) ⇉s (i.os, pc+ 1)

s(pc) = LDCB b

(os, pc) ⇉s (b.os, pc+ 1)

These load instructions simply push their value on the operand stack. The re-
maining rules implement the instructions corresponding to simPLa’s operators.
They pop their arguments from the operand stack, and push the result of the
operation back onto the operand stack.

s(pc) = PLUS

(i2.i1.os, pc) ⇉s (i1 + i2.os, pc+ 1)

s(pc) = MINUS

(i2.i1.os, pc) ⇉s (i1 − i2.os, pc+ 1)

Note that the MINUS instruction subtracts the top element of the stack from
the element below, because the subtrahend will be the most recently computed
value and therefore appears on top of the stack, whereas the minuend has been
computed before the subtrahend, and thus appears below it on the stack.

With this in mind, the remaining rules are straightforward.

s(pc) = TIMES

(i2.i1.os, pc) ⇉s (i1 · i2.os, pc+ 1)

s(pc) = AND

(b2.b1.os, pc) ⇉s (b1 ∧ b2.os, pc+ 1)

s(pc) = OR

(b2.b1.os, pc) ⇉s (b1 ∨ b2.os, pc+ 1)

s(pc) = NOT

(b.os, pc) ⇉s (¬b.os, pc+ 1)

s(pc) = LESS

(i2.i1.os, pc) ⇉s (i1 < i2.os, pc+ 1)

s(pc) = GREATER

(i2.i1.os, pc) ⇉s (i1 > i2.os, pc+ 1)

8.6. IMPLEMENTING A VIRTUAL MACHINE FOR SIMPLA IN JAVA 9

s(pc) = EQUAL

(i2.i1.os, pc) ⇉s (i1 ≡ i2.os, pc+ 1)

Note that the behavior of the transition function is entirely determined by
the instruction, to which pc points. Like the dynamic semantics ֌ of simPL,
the evaluation gets stuck if none of the rules apply.

The starting configuration of the machine is the pair (〈〉, 0), where 〈〉 is the
empty operand stack. The end configuration of the machine is reached, when
s(pc) = DONE. The result of the computation can be found on top of the operand
stack of the end configuration. The result of a computation of machine Ms is
denoted by R(Ms) and formally defined as

R(Ms) = v, where (〈〉, 0) ⇉∗

s
(〈v.os〉, pc), and s(pc) = DONE

Example 8.4 The following sequence of states represents the execution of the

SVML program [LDCI 10, LDCI 20, PLUS, LDCI 6, TIMES, DONE].

(〈〉, 0) ⇉ (〈10〉, 1) ⇉ (〈20, 10〉, 2) ⇉ (〈30〉, 3) ⇉ (〈6, 30〉, 4) ⇉ (〈180〉, 5)

At this point, the machine has reached an end configuration, because s(5) =
DONE. The result of the computation is therefore 180.

8.6 Implementing a Virtual Machine for simPLa

in Java

The following Java program shows the general structure of our machine. It
consists of a while loop, which contains a switch statement for executing in-
structions. The registers pc and os are represented by Java variables pc and os

to which the interpreter loop has access.

public class VM {

public static Value run(INSTRUCTION[] instructionArray) {

int pc = 0;

Stack os = new Stack();

loop:

while (true) {

INSTRUCTION i = instructionArray[pc];

switch (i.OPCODE) {

case OPCODES.LDCI: os.push(new IntValue(i.VALUE));

pc++;

break;

case OPCODES.PLUS: os.push(new IntValue(

os.pop().value +

os.pop().value));

10 CHAPTER 8. VIRTUAL MACHINES

pc++;

break;

case OPCODES.DONE: break loop;

}

}

return os.pop();

}

}

The instruction DONE breaks the loop, after which the top of the operand stack
is returned as the result of the program.

8.7 A Virtual Machine for simPLb

The language simPLb adds the primitive operator division to the language. In
order to handle division by zero, we add ⊥ as possible stack value. Division by
zero will then push ⊥ on the stack, and jump to DONE.

Observe that DONE is always at the end of a given program s. In other words,
s(|s| − 1) = DONE. Thus, we can formulate the rules for division as follows:

s(pc) = DIV

(0.i1.os, pc) ⇉s (⊥.os, |s| − 1)

s(pc) = DIV, i2 6= 0

(i2.i1.os, pc) ⇉s (i1/i2.os, pc+ 1)

In our Java implementation, we can just break the loop when encountering
the divisor 0. The method run will then return the Error value.

case OPCODES.DIV: int divisor = os.pop();

if (divisor == 0) {

os.push(new Error());

break loop;

} else {

os.push(new IntValue(

os.pop().value

/ divisor));

pc++;

break;

}

8.8 A Virtual Machine for simPLc

The language simPLc adds conditionals to simPLb. Conditionals involve jump-
ing from one part of the program to another. How can we jump in our machine?
The obvious answer: by setting the program counter to the index of the jump
target. Indices pointing to instructions in the instruction sequence are called
addresses.

8.8. A VIRTUAL MACHINE FOR SIMPLC 11

In order to implement conditionals, we add the instructions GOTOR (“GOTO”
Relative) and JOFR (Jump On False Relative) to our instruction set. Both in-
structions carry with them an offset, by which the program counter is incre-
mented. The instruction GOTOR i always increments the program counter by
i, whereas JOFR i increments the program counter by i only if the top of the
operand stack is false.

The translation of conditionals is as follows.

E1 →֒ s1 E2 →֒ s2 E3 →֒ s3

if E1 then E2 elseE3 end →֒ s1.JOFR |s2|+ 2.s2.GOTOR |s3|+ 1.s3

Example 8.5 The translation function translates the simPLc expression

2 * if true | false then 1+2 else 2+3 end

to the following instruction sequence.

[LDCI 2, LDCB true, LDCB false, OR, JOFR 5, LDCI 1, LDCI 2, PLUS,
GOTOR 4, LDCI 2, LDCI 3, PLUS, TIMES, DONE]

The execution of JOFR and GOTOR is defined as follows.

s(pc) = GOTOR i

(os, pc) ⇉s (os, pc+ i)

s(pc) = JOFR i

(true.os, pc) ⇉s (os, pc+ 1)

s(pc) = JOFR i

(false.os, pc) ⇉s (os, pc+ i)

Example 8.6 The following state sequence represents the execution of the pro-

gram in the previous example.

(〈〉, 0) ⇉s (〈2〉, 1) ⇉s (〈true, 2〉, 2) ⇉s (〈false, true, 2〉, 3) ⇉s (〈true, 2〉, 4) ⇉s

(〈2〉, 5) ⇉s (〈1, 2〉, 6) ⇉s (〈2, 1, 2〉, 7) ⇉s (〈3, 2〉, 8) ⇉s (〈3, 2〉, 12) ⇉s (〈6〉, 13)

The last state is an end configuration, and thus the result is 6.

The compiler in our Java implementation is able to compute absolute jump
addresses instead of letting the machine do the computation. The corresponding
instructions are called GOTO and JOF (Jump On False).

Example 8.7 Using these new jump instructions, the expression in Exam-

ple 8.5 is compiled to the following instruction sequence, where the code ad-

dresses are indicated for clarity.

12 CHAPTER 8. VIRTUAL MACHINES

[LDCI 2 0

LDCB true 1

LDCB false 2

OR 3

JOF 9 4

LDCI 1 5

LDCI 2 6

PLUS 7

GOTO 12 8

LDCI 2 9

LDCI 3 10

PLUS 11

TIMES 12

DONE] 13

The new instructions are defined by the following rules.

s(pc) = GOTO i

(os, pc) ⇉s (os, i)

s(pc) = JOF i

(true.os, pc) ⇉s (os, pc+ 1)

s(pc) = JOF i

(false.os, pc) ⇉s (os, i)

We add the following two cases to the loop of the virtual machine.

case OPCODES.GOTO: pc = i.ADDRESS;

break;

case OPCODES.JOF: pc = (os.pop().value)

? pc+1

: i.ADDRESS;

break;

8.9 A Virtual Machine for simPLd

The language simPLd adds identifiers, function definition and application to
simPLc. Note that we revert to reducing the let construct to function definition
and application and thus avoid its treatment here.

x

E

fun x1 · · ·xn -> E end

E E1 · · · En

(E E1 · · ·En)

These constructs are by far the most challenging aspects of simPL from the
point of view of the virtual machine. We shall describe the compilation of

8.9. A VIRTUAL MACHINE FOR SIMPLD 13

these constructs and the execution of the corresponding SVML instructions
step by step in the following paragraphs. Along the way, we shall introduce
the instructions of the corresponding machine language SVMLd. Section 8.10
discusses our virtual machine implementation.

Compilation of Identifiers Similar to the approach of the previous chapter,
we implement identifiers by environments. To this aim, we add a register e
to the machine state. Register e represents the environment with respect to
which the identifiers are executed. As usual, environments map identifiers to
denotable values. Thus an environment e, in which x refers to the integer 1 can
be accessed by applying e to x, e(x) = 1.

Occurrences of identifiers in simPLd are translated to instructions LDS x
(LoaD Symbolic).

x →֒ LDS x

Execution of Identifiers The execution of identifier occurrences pushes the
value to which the identifier refers on the operand stack. Thus, the rule speci-
fying the behavior of LDS x is as follows.

s(pc) = LDS x

(os, pc, e) ⇉s (e(x).os, pc+ 1, e)

Note that the state of our machine now has an additional component, the envi-
ronment e.

Compilation of Function Application A function application is translated
by translating operator and operands, and adding a new instruction CALL n,
which remembers the number of arguments n of the application.

E →֒ s E1 →֒ s1 · · ·En →֒ sn

(E E1 · · ·En) →֒ s.s1.sn.CALL n

Thus, the instruction CALL n will find the operands of the application in
reverse order, followed by the operator, on the operand stack.

Compilation of Function Definition Function definition needs to create a
function value, which will have a reference to the code to which the function
body is translated. In addition, the function definition needs to remember
the names of its formal parameters. The function definition is represented in
SVML code by the instruction LDFS (LoaD Function Symbolic), and translated
as follows.

14 CHAPTER 8. VIRTUAL MACHINES

E →֒ s

fun x1 . . . xn -> E end →֒ LDFS x1 · · ·xn.GOTOR |s|+ 2.s.RTN

Execution of the instruction LDFS will push a function value and then jump
to the code after the function body. In between is the code of the function body,
followed by a RTN instruction, which indicates that the called function ReTurNs
to the caller.

Execution of Function Definition According to static scoping, the function
body needs to be executed with respect to the environment of the function defini-
tion. Thus, function definition needs to push a function value, which remembers
the code address of the body, the formal parameters and the environment.

s(pc) = LDFS x1 · · ·xn

(os, pc, e) ⇉s ((pc+ 2, x1 · · ·xn, e).os, pc+ 1, e)

Such a triple (address, formals, e) is called a closure in the context of virtual
machines.

Execution of Function Application According to the translation of func-
tion application, the instruction CALL n will find its arguments in reverse order
on the operand stack, followed by the operator, which—according the the pre-
vious paragraph—is represented by a closure. To implment static scoping, the
machine must take the environment of the closure, and extend it by a binding
of the formal parameters to the actual arguments. Thus, the following rule is
our first attempt to describe the execution of CALL n.

s(pc) = CALL n

(vn. . . . v1.(address, x1 · · ·xn, e
′).os, pc, e)

⇉s (os, address, e
′[x1 ← v1] · · · [xn ← vn])

There is, however, a major difficulty with this rule. What should happen
when a function returns? In other words, what should the machine do when it
encounters the instruction RTN after executing the function body? In particu-
lar, what should be the program counter, operand stack and environment after
returning from a function? Of course, the program counter, operand stack and
environment must be restored to their state before the function call.

In order to keep program execution in a simple loop, we need to make this
return information explicit. Since functions can call other functions before re-
turning, the natural data structure for this return information is a stack. We
call this stack the runtime stack. The runtime stack, denoted by rs, will be the
forth and last register that we add to our machine state. Each entry in the run-
time stack contains the address of the instruction to return to, and the operand

8.10. IMPLEMENTING A VIRTUAL MACHINE FOR SIMPLD IN JAVA15

stack os and environment e to be reinstalled after the function call. Such a
triplet (address, os, e) is called runtime stack frame, or simply stack frame.

Function application pushes a new stack frame on the runtime stack, in
addition to the actions described in the first attempt above. Thus, the actual
rule for CALL n is as follows.

s(pc) = CALL n

(vn. . . . v1.(address, x1 · · ·xn, e
′).os, pc, e, rs)

⇉s (〈〉, address, e
′[x1 ← v1] · · · [xn ← vn], (pc+ 1, os, e).rs)

Returning from a function Now, the instruction RTN can return from a
function by popping a stack frame from the runtime stack and re-installing its
content in the other machine registers.

s(pc) = RTN n

(v.os, pc, e, (pc′, os′, e′).rs) ⇉s (v.os
′, pc′, e′, rs)

Of course, all other instructions need to be extended to include a runtime
stack, which is not changed by the instruction. For example, the rule for LDS
becomes:

s(pc) = LDS x

(os, pc, e, rs) ⇉s (e(x).os, pc+ 1, e, rs)

8.10 Implementing a Virtual Machine for sim-

PLd in Java

Similar to the previous section, we are going to look at the implementation
aspects of the virtual machine for simPLd step by step.

Compilation of identifiers Instead of using lookup tables that map identi-
fiers to values, our actual compiler predicts the place where the identifier can be
found in the environment. Identifiers are therefore translated to load instruc-
tions LD that carry the index where the identifier is expected in the environment.

public class LD extends INSTRUCTION {

public int INDEX;

public LD(int i) {

OPCODE = OPCODES.LD;

INDEX = i;

}

}

16 CHAPTER 8. VIRTUAL MACHINES

Compilation of function definition To avoid the GOTOR instruction after
LDFS (see page 14), the code for function bodies is placed to a different part of the
INSTRUCTION array. Thus, the instruction corresponding to function definition
needs to remember the address of the first instruction of the corresponding
body. On the other hand, since the compiler predicts all environment positions
of identifiers, there is no need to remember the names of formal parameters.
The corresponding LDF (LoaD Function) class follows.

public class LDF extends INSTRUCTION {

public int ADDRESS;

public LDF(int address) {

OPCODE = OPCODES.LDF;

ADDRESS = address;

}

}

Compilation of application Applications remember their number of argu-
ments. The corresponding class follows.

public class CALL extends INSTRUCTION {

public int NUMBEROFARGUMENTS;

public CALL(int noa) {

OPCODE = OPCODES.CALL;

NUMBEROFARGUMENTS = noa;

}

}

Example 8.8 To illustrate the compilation, let us consider the following sim-

PLd expression.

(fun x -> x + 1 end 2)

This expression gets translated to the instruction sequence

[LDF 4 0

LDCI 2 1

CALL 1 2

DONE 3

LD 0 4

LDCI 1 5

PLUS 6

RTN] 7

Note that the compiler avoids the GOTO instruction after LDF by placing the code

for the body after the DONE instruction.

8.10. IMPLEMENTING A VIRTUAL MACHINE FOR SIMPLD IN JAVA17

Representation of environments Instead of using lookup tables that map
identifiers to values, our actual compiler predicts the place where the identifier
can be found in the environment. Thus, a vector mapping integers to Values
represents environments. The CALL instruction needs to extend the closure’s
environment by as many new slots as the called function has arguments, which
is done by Environment’s extends method.

public class Environment extends Vector {

public Environment extend(int numberOfSlots) {

Environment newEnv = (Environment) clone();

newEnv.setSize(newEnv.size() + numberOfSlots);

return newEnv;

}

}

The environment register e is represented by the additional Java variable e to
which the interpreter loop has access.

Execution of identifiers The LD instruction simply looks up the Value

stored in the environment under its INDEX.

case OPCODES.LD: os.push(e.elementAt(i.INDEX));

pc++;

break;

Representation of closures Function definitions must—in addition to the
body of the function—keep track of the environment in which the definition was
executed. To this aim, we add another Value class.

public class Closure implements Value {

public Environment environment;

public int ADDRESS;

Closure(Environment e, int a) {

environment = e;

ADDRESS = a;

}

}

Execution of function definition At runtime, LDF simply puts together a
Closure data structure, consisting of the current environment and the address
of the function, and pushes it on the operand stack.

case OPCODES.LDF: Environment env = e;

os.push(new Closure(env,i.ADDRESS));

pc++;

break;

18 CHAPTER 8. VIRTUAL MACHINES

Representing runtime stack frames The instructions CALL and RTN form
a pair. In order to be able to return from function application, the current
environment, the current operand stack and the current program counter need
to be saved in a runtime stack frame.

public class StackFrame {

public int pc;

public Environment environment;

public Stack operandStack;

public StackFrame(int p, Environment e, Stack os) {

pc = p;

environment = e;

operandStack = os;

}

}

The runtime stack register rs is represented by the additional Java variable rs

to which the interpreter loop has access.

Execution of application The instruction CALL takes the callee function’s
environment out of its closure and extends it by bindings of the arguments.
Then it pushes a new frame on the runtime stack, saving the current register
values (after incrementing pc by 1 to make it point ot the next instruction) for
the return from the function. Finally it sets the registers for the execution of
the function body.

case OPCODES.CALL: { int n = i.NUMBEROFARGUMENTS;

Closure closure

= os.elementAt(os.size()-n-1);

Environment newEnv

= closure.environment.extend(n);

int s = newEnv.size();

for (int j = s-1; j >= s-n; --j)

newEnv.setElementAt(os.pop(),j);

os.pop(); // function value

rs.push(new StackFrame(pc+1,e,os));

pc = closure.ADDRESS;

e = newEnv;

os = new Stack();

break;

}

Returning from a function The RTN instruction pops the most recently
saved frame from the runtime stack and reinstalls its components in the respec-
tive registers.

case OPCODES.RTN: Value returnValue = os.pop();

8.11. A VIRTUAL MACHINE FOR SIMPLE 19

StackFrame f = rs.pop();

pc = f.pc;

e = f.environment;

os = f.operandStack;

os.push(returnValue);

break;

The RTN instruction pops the return value from the old os and pushes it onto
the new os.

8.11 A Virtual Machine for simPLe

The call of recursive functions needs to extend the function environment by a
binding of the function variable to the function value. Recursive function defi-
nition therefore needs to remember the function variable in the corresponding
instruction LDRFS (LoaD Recursive Function Symbolic).

E →֒ s

recfun f x1 . . . xn -> E end →֒ LDRFS f x1 · · ·xn.GOTOR |s|+ 2.s.RTN

The execution of LDRFS creates a closure, which contains the name of the
function variable, and thus consists of a quadruplet of the form (address, funvar,
formals, e).

Correspondingly, we add the following rules for definition and application of
recursive functions.

s(pc) = LDRFS f x1 · · ·xn

(os, pc, e) ⇉s ((pc+ 2, f, x1 · · ·xn, e).os, pc+ 1, e)

s(pc) = CALL n

(vn. . . . v1.(address, f, x1 · · ·xn, e
′).os, pc, e, rs) ⇉s

(〈〉, address, e′[f ← (address, f, x1 · · ·xn, e
′)][x1 ← v1] · · · [xn ← vn], (pc+ 1, os, e).rs)

In our actual implementation, which relies on the compiler to compute the
correct environment indices for all identifier occurrences, we employ a trick to
achieve a similar effect. Recursive function definition extends the given environ-
ment by an entry containing the function itself. That means that the resulting
closure is a circular data structure. The compiler generates an LDRF n (LoaD
Recursive Function) instruction similar to LDF, which is executed as follows.

case OPCODES.LDRF: Environment envr = e.extend(1);

Value fv = new

Closure(envr,i.ADDRESS);

20 CHAPTER 8. VIRTUAL MACHINES

envr.setElementAt(fv,e.size());

os.push(fv);

pc++;

break;

Using this trick, there is no need to change the execution of the CALL instruc-
tion. Function calls do not need to distinguish between functions and recursive
functions.

8.12 Tail Recursion

Each function call creates a new stack frame and pushes it on the runtime
stack. Function calls therefore consume a significant amount of memory. There
are situations, where the creation of a new stack frame can be avoided.

If the last action in the body of a function is another function call, then
the environment, program counter and operand stack of the calling function
invocation is not going to be needed upon returning from the function to be
called. The function to be called can return to wherever the calling function
needs to return.

Furthermore, if the calling function and the function to be called is the
same recursive function, then the environment needed by the called invocation
is almost identical to the environment of the calling invocation. The difference is
the binding of the formal parameters to arguments, which of course can change
between recursive calls.

A recursive call, which appears in the body of a recursive function as the
last instruction to be executed, is called tail call. A recursive function, in which
all recursive calls are tail calls, is called tail-recursive.

Example 8.9 Consider the following implementation of the factorial function.

let

facloop = recfun facloop n acc ->

if n = 1 then acc

else (facloop n-1 acc*n)

end

end

in

let

fac = fun n -> (facloop n 1) end

in

(fac 4)

end

end

The recursive call in the body of facloop is the last instruction to be executed

by the body. It is a tail call. Therefore, we can re-use the environment of the

8.12. TAIL RECURSION 21

calling invocation and do not need to push a new stack frame. Since the tail call

is the only recursive call of facloop, the function is tail-recursive.

We change our compiler so that the instruction sequence CALL n.RTN is replaced
by TAILCALL n, when the operator of the call is a variable f , the immediately
surrounding function definition is recursive and has the function variable f .

Example 8.10 Our modified compiler generates the following instructions for

the body of facloop.

[LD 1 4

LDCI 1 5

EQUAL 6

JOF 10 7

LD 2 8

RTN 9

LD 0 10

LD 1 11

LDCI 1 12

MINUS 13

LD 2 14

LD 1 15

TIMES 16

TAILCALL 2] 17

Tail calls do not need to manipulate the runtime stack. Instead they replace the
current values of the argument variables with the arguments of the new call.

s(pc) = TAILCALL n

(vn. . . . v1.(address, f, x1 · · ·xn, e
′).os, pc, e, rs) ⇉s

(〈〉, address, e[x1 ← v1] · · · [xn ← vn], rs)

Note that TAILCALL does not save any stack frame. The function that is be-
ing called will therefore return directly to the function that called the calling
function. The old environment e is not needed any longer. The environment
extension operation can therefore be destructive.

The implementation of TAILCALL is simpler and much more efficient than
the implementation of CALL (compare with page 18).

case OPCODES.TAILCALL: { int n = i.NUMBEROFARGUMENTS;

Closure closure

= os.elementAt(os.size()

-n-1);

int s = e.size();

int k = s - n;

int j = s - 1;

22 CHAPTER 8. VIRTUAL MACHINES

while (j >= k)

e.setElementAt(os.pop(),j--);

os.pop();

pc = closure.ADDRESS;

break;

}

8.13 Compilation and Execution

In our virtual machine based implementation of simPL, we now have two distinct
phases, namely compilation to SVML code, and execution of the SVML code
by a virtual machine.

If we choose to directly execute the instructions stored in the instruction
array, we can still view the entire execution of simPL program as an interpreter.
The interpreter uses compilation, which is an internal detail of its implementa-
tion. According to this view, the corresponding T-diagrams are as follows.

simPL

Java Java JVM

x86

-

x86

simPL

JVM

gcd

simPL

simPL

JVM

JVM

x86

x86

Instead of directly executing the instructions, we can instead store the in-
struction array in a file (in Java easily done using an ObjectOutputStream).
This amounts to a simPL compiler, which translates simPL files to SVML files.

The machine loads a given SVML file and executes its SVML code. Thus
the machine acts as an emulator for SVML. Since it is implemented in Java,
it is running on top of the Java Virtual Machine, as depicted in the following
T-diagrams.

SVML

Java Java JVM

x86

-

x86

SVML

JVM

8.13. COMPILATION AND EXECUTION 23

gcd

simPL simPL SVML

JVM

-

JVM

x86

x86

gcd

SVML

gcd

SVML

SVML

JVM

JVM

x86

x86

Example 8.11 Using the compiler simplc and the emulator simpl, both writ-

ten in Java, we can execute a given simPL program gcd.simpl as follows:

> java simplc gcd.simpl

> ls gcd.*

gcd.simpl gcd.svml

> java simpl gcd

2

