
CS4215—Programming Language

Implementation

Martin Henz

Thursday 16 February, 2012

2

Chapter 9

Memory Management

9.1 Motivation

Programs running on computers consume two kinds of resources: time and
memory.

In the previous chapter, we have managed to introduce a semantic frame-
work that lets us take a realistic account of the runtime of simPL programs.
We achieved this by compiling simPL to the virtual machine language sVML.
The runtime of the virtual machine is measured as the number of machine in-
structions that get executed. Even the most complex instruction, CALL, can be
implemented in a few clock cycles on modern hardware, which indicates that
our approach in principle allows to adequately account for actual runtime.

However, the second resource, memory, is not represented so far. In our
rules specifying sVM’s transition function ⇉s, we freely construct tuples, such
as runtime stack frames, and mappings, such as environments, without regard
of the actual realization of these data structures. This makes it hard to account
for the memory usage of sVML code. Once a data structure is created, will it
have to be stored until the end of the program execution? Will a given program
run out of memory? Can we design a virtual machine that makes effective use
of the available memory?

Before we address these questions, we discuss general memory management
techniques in programming systems in Section 9.2. Section 9.3 introduces a
model for heap memory. Using this model, we reformulate the virtual machine
of the previous chapter in Section 9.4. Section ?? describes a realization of a
heap using actual computer memory. Sections 10.6, 10.7, and 10.8 describe three
common memory management techniques, namely reference counting, mark-
sweep garbage collection and copying garbage collection. Finally, Section 10.9
gives an overview of the history of memory management and further reading.

3

4 CHAPTER 9. MEMORY MANAGEMENT

9.2 Memory Allocation for Programs

The simplest way to allocate memory used in programs is to assign a fixed mem-
ory location for every identifier occurring in the program. Such static allocation
was the initial memory allocation technique for the first high-level languages
such as FORTRAN. Static allocation limits the set of program constructs of a
language in the following ways [JL96]:

• The size of each data structure must be known at compile-time. For ex-
ample, arrays whose size depends on function parameters are not possible.

• Recursive functions are not possible, because each recursive call needs its
own copy of parameters and local variables.

• Data structures such as closures cannot be created dynamically.

The advantages of static allocation are speed and safety (since programs cannot
run out of space at run-time).

The next memory allocation technique is stack allocation. In the previous
chapter, we have seen the usage of a runtime stack to keep track of the operand
stack, program counter and environment of functions. With stack allocation,
functions can be recursive, because different invocations can operate on dif-
ferent instances of identifiers. The size of local variables such as arrays may
depend on a parameter passed to the function, because the stack can grow as
much as required. If all memory, including the operands, the environment and
data structures such as closures get allocated directly on the runtime stack, the
following disadvantages remain [JL96]:

• It is difficult to manipulate data structures since they are tied to the func-
tion invocations that created them. In particular, recursive data structures
such as list and trees cannot be handled in a natural way.

• Only objects whose size is known at compile time can be returned as the
result of a function, because the caller needs to reserve stack space for the
return value.

In simPL, stack allocation alone is not sufficient, since functions can be returned
as the result of another function. Closures can have different sizes, depending
on their environment. Since the compiler cannot know, which function will be
returned at runtime, it cannot reserve an adequate amount of memory for the
return value to be placed in.

The last memory allocation technique, heap allocation, overcomes all these
difficulties. With heap allocation, data structures may be allocated and deallo-
cated in any order. This means that complex pointer structures will evolve at
runtime. The down-side of heap allocation is therefore that efficient manage-
ment of these structures becomes a non-trivial task. Sections 10.6, 10.7, and
10.8 describe three common memory management techniques. Before we can
describe them in detail, we introduce a formal heap memory model in the next
section.

9.3. A HEAP MEMORY MODEL 5

9.3 A Heap Memory Model

Memory is used to store structured information, such as stack frames, environ-
ments, closures, and primitive data such as integers and booleans. We find it
convenient to represent this information in form of a mathematical object called
heap.

We distinguish nodes in the heap, representing entities like stack frames,
operand stacks, environments, and closures, from edges, which represent refer-
ences between these entities. For example, an operand stack can have a reference
to a closure. To distinguish the different references from each other, for example
the entries of an operand stack, we label the edges with symbols or numbers.
Furthermore, we need to represent primitive values such as integers and booleans
in the heap, and therefore, we allow edges to point to such values.

More formally, this leads to the following variant of edge-labeled graphs. For
a given set of primitive values PV, and a set of label symbols LS, a heap is a
pair (V,E), where V is a set of vertices, and

E ⊆ {(v, f, w)|v ∈ V, f ∈ LS+ Int, w ∈ V +PV}

In a given edge (v, f, w), the node v is called the source, f is called the label,
and w is called the target. The set of targets V +PV is denoted by W in the
following, and the set of labels LS+ Int is denoted by L. We require that the
ternary relation formed by E is a function in its first two components. That
means for any v ∈ V and f ∈ L there is at most one w ∈ W such that (v, f, w) ∈
E. For a given node v the set of targets {w|(v, f, w) ∈ E for some f ∈ L} is
called the set of children of v, and the set {f |(v, f, w) ∈ E for some w ∈ W} is
called the set of labels of v.

The following operations on heaps will prove useful. The first operation
newnode constructs a heap where a new node is added.

newnode((V,E)) = (v, (V ∪ {v}, E))

where v is chosen new, which means v 6∈ V

Note that this operation returns a pair consisting of a new node and a new heap.

The next operation update constructs a heap, where the target of a node and
label is changed.

update(v, f, w, (V,E)) = (V, (v, f, w) ∪ (E − {(v, f, w′)|w′ ∈ W}))

Note that this operation preserves the property that E is a function in its first
two components.

The operations newnode and update are two of the operations that are al-
lowed to change the heap. From the point of view of memory management, the
running program is a heap changer that executes a sequence of such operations
on the heap. These operations are therefore called mutator operations (from
mutare, Latin, “to change”).

6 CHAPTER 9. MEMORY MANAGEMENT

The following operations return all children, the children that are nodes, all
labels and a specific child of a given node, respectively.

children(v, (V,E)) = {w ∈ W | (v, f, w) ∈ E for some f ∈ L}

nodechildren(v, (V,E)) = {w ∈ V | (v, f, w) ∈ E for some f ∈ L}

labels(v, (V,E)) = {f ∈ L | (v, f, w) ∈ E for some w ∈ W}

deref(v, f, (V,E)) = w, where (v, f, w) ∈ E

Note that deref is a partial function.
The next mutator operation, copy, creates a new node which has the same

children under the same labels as a given node.

copy(v, (V,E)) = (v′, (V ∪ {v′}, E ∪ {(v′, f1, deref(v, f1, (V,E))), . . . ,

(v′, fn, deref(v, fn, (V,E)))}))

where {f1, . . . , fn} = labels(v, (V,E))

In order to represent stacks in the heap, it is convenient to introduce the follow-
ing stack-specific mutator operations, which are defined in terms of the mutator
operations.

newstack(h) = (v, h′′)

where (v, h′) = newnode(h),

and h′′ = update(v, size, 0, h′)

push(v, w, h) = h′′

where s = deref(v, size, h),

h′ = update(v, size, s+ 1, h),

and h′′ = update(v, s, w, h′)

pop(v, h) = (w, h′)

where s = deref(v, size, h),

h′ = update(v, size, s− 1, h),

and w = deref(v, s− 1, h′)

9.4 A Memory-aware Virtual Machine for simPL

Now we can reformulate our rules defining the virtual machine for simPL to use
a heap h, where PV = Int + Bool + Id, and where LS = Id. The registers
os, pc, e, rs are now simply nodes in h. The heap itself becomes part of the state
of the machine.

We start the machine with a state of the form (os0, 0, e0, rs0, h0), where

(os0, h
′) = newstack((∅, ∅))

(e0, h
′′) = newnode(h′)

(rs0, h0) = newstack(h′′)

9.4. A MEMORY-AWARE VIRTUAL MACHINE FOR SIMPL 7

The following rules describe the new machine. Observe, where the mutator
(here the virtual machine instructions) makes use of the mutator operations
newnode and update, and its stack variants newstack, push, and pop.

We modify the rule for LDCI (LDCB is similar) as follows.

s(pc) = LDCI i

(os, pc, e, rs, h) ⇉s (os, pc+ 1, e, rs, h′)

where h′ = push(os, i, h)

We give the rules for PLUS and UMINUS; the instructions for the remaining prim-
itive operators are similar.

s(pc) = PLUS

(os, pc, e, rs, h) ⇉s (os, pc+ 1, e, rs, h′′′)

where

(i2, h
′) = pop(os, h)

(i1, h
′′) = pop(os, h′)

h′′′ = push(os, i1 + i2, h
′′)

s(pc) = UMINUS

(os, pc, e, rs, h) ⇉s (os, pc+ 1, e, rs, h′′)

where

(i, h′) = pop(os, h)

h′′ = push(os, 0− i, h′)

The jump instructions are straightforward.

s(pc) = GOTOR i

(os, pc, e, rs, h) ⇉s (os, pc+ i, e, rs, h)

s(pc) = JOFR i

(os, pc, e, rs, h) ⇉s (os, pc+ 1, e, rs, h′)

if (true, h′) = pop(os, h)

s(pc) = JOFR i

(os, pc, e, rs, h) ⇉s (os, pc+ i, e, rs, h′)

if (false, h′) = pop(os, h)

8 CHAPTER 9. MEMORY MANAGEMENT

The LDS instruction follows the edge from node e with the label x given in the
instruction.

s(pc) = LDS x

(os, pc, e, rs, h) ⇉s (os, pc+ 1, e, rs, h′)

where h′ = push(os, deref(e, x, h), h)

s(pc) = LDFS x1 · · ·xn

(os, pc, e, rs, h) ⇉s (os, pc+ 1, e, rs, h′)

where

(c, h(1)) = newnode(h)

(f, h(2)) = newnode(h(1))

h(3) = update(c, address, pc+ 2, h(2))

h(4) = update(c, formals, f, h(3))

h(5) = update(c, environment, e, h(4))

h(6) = push(os, c, h(5))

h(6+i) = update(f, i, xi, h
(6+i−1)), where 1 ≤ i ≤ n

h′ = h(6+n)

As usual, the instruction CALL is the most complicated case.

s(pc) = CALL n

(os, pc, e, rs, h(0)) ⇉s (os
′, a, e′, rs, h′)

where

(vn−i+1, h
(i)) = pop(os, h(i−1)), where 1 ≤ i ≤ n

(c, h(n+1)) = pop(os, h(n))

a = deref(c, address, h(n+1))

f = deref(c, formals, h(n+1))

(e′, h(n+2)) = copy(deref(c, environment, h(n+1)), h(n+1))

h(n+i+2) = update(e′, deref(f, i, h(n+i)), vi, h
(n+i+1)),

where 1 ≤ i ≤ n

(sf, h(2n+3)) = newnode(h(2n+2))

h(2n+4) = update(sf, pc, pc+ 1, h(2n+3))

h(2n+5) = update(sf, os, os, h(2n+4))

h(2n+6) = update(sf, e, e, h(2n+5))

(os′, h(2n+7)) = newstack(h(2n+6))

h′ = push(rs, sf, h(2n+7))

9.4. A MEMORY-AWARE VIRTUAL MACHINE FOR SIMPL 9

The last rule that we mention is for the RTN instruction. The remaining rules
(LDRFS, its corresponding CALL rule, and TAILCALL) are left to the reader.

s(pc) = RTN n

(os, pc, e, (pc′, os′, e′).rs, h) ⇉s (os
′, pc′, e′, rs), h′

where

(sf, h(1)) = pop(rs, h)

os′ = deref(sf, os, h(1))

pc′ = deref(sf, pc, h(1))

e′ = deref(sf, e, h(1))

(v, h(2)) = pop(os, h(1))

h′ = push(os′, v, h(2))

With this machine in place, we can exactly account for the memory usage of
each instruction. For example, the instruction LDFS x y z creates two nodes,
one for the closure c, and one for the formals f , and seven edges, three to connect
c to its children, one to connect the operand stack to c, and three to connect x,
y and z to f .

The space consumption of a program can be measured as the number of
nodes and edges that are created by it. Two sets of questions arise from this
setup.

Firstly, how realistic is this graph view of a heap? How do we implement the
heap graph in a computer memory? Is there a relationship between the number
of nodes and edges and the amount of computer memory needed to represent
them? This question is answered in the next section.

The second set of questions arises from the fact that instructions keep creat-
ing new nodes in the heap and never take them out again. The heap therefore
becomes bigger and bigger during the computation, and eventually, we are run-
ning out of memory. Is this behavior inevitable? Once a node is created, will it
have to be stored until the end of the program execution? The answer is clearly
negative. For example, once a runtime stack frame has been popped from the
runtime stack, it will never be used again.

At any point of time, the set of nodes V can be split into two sets, V =
Vuseful ∪ Vuseless. The set Vuseful contains those nodes that will be used in the
future. These nodes will appear in registers of the machine and will be operated
on by instructions. The nodes in Vuseless on the other hand will never be used
again. If we had an algorithm A that would split V into Vuseful and Vuseless,
we could run A after each instruction (or once in a while) to find Vuseless. We
could then reuse the nodes in Vuseless and edges to and from Vuseless for future
heap operations.

Unfortunately, the question whether a given node will be used in the future
is in general undecidable. We cannot hope for an algorithm A. The best we

10 CHAPTER 9. MEMORY MANAGEMENT

can do is to approximate Vuseful and Vuseless with an algorithm that splits V
into Vlive and Vdead, where Vlive ⊇ Vuseful and Vdead ⊆ Vuseless. All memory
management techniques are based on such a distinction. They may differ in the
choice of liveness criteria used. We shall see examples in Sections 10.6, 10.7,
and 10.8.

9.5 Reference Counting

Memory management techniques identify elements of Vuseless so that the mem-
ory they are occupying can be reused. A sufficient condition for a node v to be
in Vuseless is that there is no edge whose target is v. Thus, the idea of our first
memory management technique is for every node to keep track of the number
of edges that end in it. If that number drops to 0, the node has become un-
reachable, and therefore must be in Vuseless. The memory that it occupies can
be reused.

Thus, reference counting defines Vdead as follows.

Vdead = {w ∈ V | there is no f ∈ L, v ∈ V, such that (v, f, w) ∈ E}

Every update operation identifies all new elements of Vdead and makes them
available for future newnode operations.

Initially, all cells are placed in a Freelist data structure, indicating that
all memory is available to the virtual machine. This data structure is realized
directly in the heap by reusing a specific field in the node with offset NEXT. This
way, a chain of nodes is created, each pointing to the next one using the NEXT

field. Similarly, we keep track of the reference count of each node using a field
with offset RC. The following code suggests the initialization of the heap.

static int NEXT = 1; // field 1 keeps the next pointer

static int RC = 1; // field 1 keeps the reference count

static int Freelist = HEAPBOTTOM;

int current = HEAPBOTTOM;

while (current+NODESIZE < HEAPSIZE) {

heap[current+NEXT] = current+NODESIZE;

current = current + NODESIZE;

}

heap[current+NEXT] = NIL;

NEXT and RC are global constants, whereas Freelist is a global variable that
will change during runtime. We can keep the NEXT pointer and the reference
count RC in the same field, because at any point in time, only one of the two
will be carrying useful information.

Note that for simplicity, we assume that all nodes have the same size, given
by the constant NODESIZE. In actual virtual machines, nodes come in different
sizes which may complicate memory management significantly.

9.5. REFERENCE COUNTING 11

Allocating a new node In order to allocate a new node, we need to look
for a free cell in the freelist. The operation newnode() returns a reference to
the newly created node to the virtual machine. Therefore, the reference count
of the resulting node is 1.

int allocate() {

int newnode = Freelist;

Freelist = HEAP[Freelist+NEXT];

return newnode;

}

int newnode() {

if (Freelist == NIL) abort("Memory exhausted");

int newnode = allocate();

HEAP[newnode+RC] = 1;

return newnode;

}

Updating an edge Once the reference count of a cell drops to 0, the cell
becomes garbage. Then, we can decrement the reference count of all of its chil-
dren by 1 (one less “meaningful” reference), which may turn them into garbage
as well. The operation update() therefore, carries out a delete() operation,
which calls itself recursively, if RC has dropped to 0.

void free(int n) {

HEAP[n+NEXT] = Freelist;

Freelist = n;

}

void delete(int n) {

HEAP[n+RC] = HEAP[n+RC] - 1;

if (HEAP[n+RC] == 0) {

for c in children(n) do

delete(HEAP[n+c]);

free(n);

}

}

void update(int v,int f,int w) {

delete(HEAP[v+f]);

HEAP[w+RC] = HEAP[w+RC] + 1;

HEAP[v+f] = w;

}

Jones and Lins [JL96] list the following advantages of reference counting.

Incrementality Reference counting reclaims memory on the fly. Its execution
is interleaved with the host program, and therefore, the real-time behavior
of the host program is not much affected.

12 CHAPTER 9. MEMORY MANAGEMENT

Locality A node whose reference count becomes zero can be reclaimed without
access to other cells. Therefore, cache or page faults for memory manage-
ment are minimized.

Immediate reuse Often, nodes in programs are short-lived and only a single
reference to a node gets created. In this case, reference counting can
quickly reuse the memory, leading to practically constant space usage of
the host program.

The disadvantages of reference counting are:

Runtime overhead The updating of reference counts for every pointer ma-
nipulation incurs a significant runtime overhead on modern processor ar-
chitectures.

Cyclic data structures Reference counting is unable to reclaim cyclic data
structures that become inaccessible from the outside, since none of the
elements of a cycle get a reference count of 0.

These two considerations led most runtime system implementors to abandon
reference counting in favor of variants of one of the following two algorithms.

9.6 Mark-Sweep Garbage Collection

The next memory management algorithm is called a garbage collector. When
newnode() runs out of memory, a garbage collector computes a set Vdead—with
respect to a given liveness criterion—and reclaims the memory its elements were
occupying.

The update() operation is not affected by the garbage collectors presented
here, and thus looks as follows.

void update(int v,int f,int w) {

heap[v+f] = w;

}

The garbage collector in this section is called mark_sweep; its newnode() oper-
ation is defined as follows.

int newnode() {

if (freelist == NIL) mark_sweep();

int newnode = allocate();

return newnode;

}

Liveness From the operations on the heap, it is clear that a node can be
reached in the future, only if it is connected through edges to some register of

9.6. MARK-SWEEP GARBAGE COLLECTION 13

the machine. Another way of distinguishing a set Vlive ⊇ Vuseful is therefore to
check for such a connection. If we define the relation −→ by the rule

∃f.(v1, f, v2) ∈ E

v1 −→ v2

we can define connectedness as the reflexive transitive closure −→∗ of −→.

v −→∗ v

v1 −→ v2

v1 −→∗ v2

v1 −→∗ v2 v2 −→∗ v3

v1 −→∗ v3

The set Vlive of a machine in state (os, pc, e, rs, (V,E)) is now defined as follows:

Vlive = {v ∈ V | r −→∗ v, where r ∈ {os, e, rs}}

The nodes {os, e, rs} are called the roots of the heap, denoted by Roots in the
following programs.

Algorithm The idea of mark-sweep garbage collection is to visit all nodes in
Vlive and mark them as such. This mark phase starts at the root nodes of the
heap and recursively visits all nodes connected to them. Then, a sweep phase
visits every node in the heap and makes every unmarked node available to future
memory allocations. The algorithm uses a field MARKBIT for marking nodes as
MARKED and UNMARKED.

static int MARKBIT = 1;

static int MARKED = 1;

static int UNMARKED = 0;

Free memory in mark-sweep is managed exactly like in reference counting, as a
linked list of free nodes, whose first element is located at position Freelist in
HEAP. Thus, mark_sweep() is implemented as follows.

void mark_sweep() {

for r in Roots

mark(r);

sweep();

if (Freelist == NIL) abort("memory exhausted");

}

void mark(v) {

if (HEAP[v+MARKBIT] == UNMARKED) {

HEAP[v+MARKBIT] = MARKED;

for (int c = FIRSTCHILD, c <= LASTCHILD, c++) {

mark(HEAP[v+c]);

}

14 CHAPTER 9. MEMORY MANAGEMENT

}

void sweep() {

int v = HEAPBOTTOM;

while (v < HEAPTOP) {

if (HEAP[v+MARKBIT] == UNMARKED) free(v);

else HEAP[v+MARKBIT] = UNMARKED;

v = v + NODESIZE;

}

}

Performance The performance of a garbage collector can be expressed as the
amount of memory reclaimed per unit of time. Thus for mark-sweep, we have

eMS =
mMS

tMS

where mMS is the amount of reclaimed memory and tMS is the time taken
to reclaim it. When mark-sweep gets invoked, the size of the heap is M =
|V | = HEAPSIZE/NODESIZE. Recall that R denotes the number of live nodes.
The quotient r = R/M is called the residency of the program. The memory
reclaimed by mark-sweep is

mMS = M −R

The time taken by mark-sweep is the time taken by the mark procedure, which
scans the live memory, and the time taken by sweep, which scans the entire
heap. Thus

tMS = a ·R+ b ·M

for some constants a and b. The overall efficiency can therefore be expressed as

eMS =
mMS

tMS

=
M −R

aR+ bM
=

1− r

ar + b

As residency approaches 0, the efficiency is given by 1/b, thus is dominated by
the time spent by sweep at each node. The efficency approaches 0 as residency
approaches 1.

9.7 Copying Garbage Collection

Copying garbage collection employs the same notion of live nodes as mark-sweep.
This garbage collector only uses half of the available memory for allocating
nodes. Once this half is filled up, the garbage collector copies the live memory
contained in the first half, the so-called from-space, to the other half, the so-
called to-space. Now, the roles of the halves is reversed and the other half is
filled up and so on. To achieve this, we initialize the heap as follows.

9.7. COPYING GARBAGE COLLECTION 15

void init() {

Tospace = HEAPBOTTOM;

SPACESIZE = HEAPSIZE / 2;

Topofspace = Tospace + SPACESIZE - 1;

Fromspace = Topofspace + 1;

Free = Tospace;

}

The address Free points to the first location in to-space. The operation newnode()
allocates memory at the position that Free points to. Similar to mark-sweep,
newnode() performs garbage collection—here using flip()—when no memory
is available. If there is still no memory after garbage collection, the program
aborts with the message “memory exhausted”.

int newnode() {

if (Free + NODESIZE > Topofspace)

flip();

if (Free + NODESIZE > Topofspace)

abort("memory exhausted");

int newnode = Free;

Free = Free + NODESIZE;

return newnode;

}

Algorithm The following implementation of copying garbage collection is due
to C.J. Cheney [Che70]. It first switches the roles of to-space and from-space.
The pointer Free keeps track of the next free position in to-space. Then the
roots are copied to to-space. Now, the pointer scan visits each already copied
node and copies its children to to-space. The copying process terminates as
soon as scan catches up with Free, at which point all children of all nodes have
been copied to to-space. Allocation can resume in the part of the new to-space
that remains free.

void flip() {

int temp = Fromspace;

Fromspace = Tospace; Tospace = temp;

Topofspace = Tospace + SPACESIZE - 1;

int scan = Tospace; Free = Tospace;

for r in Roots

r = copy(r);

while (scan < Free) {

for (int c = FIRSTCHILD, c <= LASTCHILD, c++)

HEAP[scan+c] = copy(HEAP[scan+c]);

scan = scan + NODESIZE;

}

}

16 CHAPTER 9. MEMORY MANAGEMENT

The copy() function uses a field in every node to keep track of the forwarding
address.

static int FORWARDINGADDRESS = 1;

Which fields are used is not relevant as long as it is not written to by update(),
and initialized to an integer that is not a heap address, for example -1. If a node
in from-space has already been moved to to-space, the field FORWARDINGADDRESS

of the original node in from-space indicates the address of its copy in to-space.
The procedure copy() for copying from-space nodes v checks whether v has

already been copied. In that case, it returns v’s forwarding address. If not, then
the node is moved to to-space. To avoid repeated copying, the original node in
from-space is equipped with the address of its copy in to-space.

int copy(int v) {

if (already_copied(v))

return HEAP[v+FORWARDINGADDRESS];

else {

int addr = Free;

move(v,Free);

Free = Free + NODESIZE;

HEAP[v+FORWARDINGADDRESS] = addr;

return addr;

}

}

It is straightforward to decide if a given node has been copied already. It suffices
to check whether its forwarding address is in to-space.

boolean already_copied(int v) {

return HEAP[v+FORWARDINGADDRESS] >= Tospace

&& HEAP[v+FORWARDINGADDRESS] <= Topofspace;

}

Performance The amount of memory recovered by copying garbage collection
is

mCopy =
M

2
−R

since the other half of M is reserved for copying. Since copying garbage collec-
tion only visits live nodes, it takes

tCopy = c ·R

where c is a constant. The resulting efficiency is

eCopy =
mCopy

tCopy

=
M

2 −R

cR
=

1

2cr
−

1

c

9.8. HISTORICAL BACKGROUND AND FURTHER READING 17

Thus the efficiency of copying garbage collection approaches infinity as residency
approaches 0, whereas it approaches 0 as residency approaches 1/2, which is the
limit where it reports “exhausted memory”.

From comparing the efficiency of mark-sweep with copying garbage collec-
tion, we conclude that mark-sweep is more efficient than copying as residency
approaches 1/2. Copying on the other hand is more efficient than mark-sweep,
when residency is very low. Which algorithm is better therefore depends on the
runtime characteristics of the application.

9.8 Historical Background and Further Reading

Historical notes Automatic memory management was pioneered by first im-
plementations of the language LISP. All techniques described here were devel-
oped in the context of LISP.

Reference counting was first described by Gelernter, Hansen and Gerberich
[GHG60]. The standard algorithm presented here is due to Collins [Col60] and
has been used as memory management technique in early versions of Smalltalk,
and Modula-2+. Mark-sweep garbage collection is due to McCarthy [McC60],
and the algorithm presented here is based on his description. The first copying
collector was Minsky’s garbage collector for Lisp 1.5 [Min63]. The copying
collector in Section 9.7, Cheney’s algorithm [Che70], is the simplest and most
elegant variant.

With Java, automatic memory management has entered the mainstream of
information technology. Most implementations of the Java Virtual Machine use
variants of mark-sweep garbage collection.

Explicit heap allocation The first usage of heap allocation was to accommo-
date user-defined data structures in Algol and Pascal. These languages provide
for pointer variables of a given type. For example,

var p : ↑ t

declares the variable p to be a pointer that can point to data structures of type t.
Pointers can be changed by assignment such as p := nil. The operation new(p)

makes p point to newly allocated memory capable of storing data of type t.
Instead of delegating the management of heap memory to the runtime system,
these languages provide an operation dispose(p) for explicitly deallocating
memory such that the memory manager can reuse it in future new operations.

The need for explicit deallocation in such languages often considerably in-
creases the complexity and therefore the cost of software development. Common
errors resulting from incorrect deallocation are space leaks and dangling refer-
ences. An example for a space leak is the program

new(p);

p := nil

18 CHAPTER 9. MEMORY MANAGEMENT

The object created by new has become inaccessible. Since it has not been
deallocated, the memory manager cannot reuse its space. The space has “leaked
away”. An example for a dangling reference is

a.s := p;

dispose(p)

Now the data structure a has a reference to a structure that may be reused by
the memory manager. Eventually, the memory manager will allocate a different
data structure to the location where a.s points to, which will give rise to a
program error.

Memory management in software systems Memory management is of
course not limited to programming systems. Programmers need to carefully
manage memory regardless whether the runtime system they use employs au-
tomatic memory management or not.

Space leaks can occur even in systems with automatic memory management.
A space leak occurs in such a system, if the program accumulates larger and
larger data structures that are accessible from the root nodes, but that will
actually never be used.

In response, large software systems sometimes implement their internal “au-
tomatic” memory management. For example, reference counting is used as a
software pattern in systems as diverse as the Unix operating system and Adobe
Photoshop.

Further reading Automatic memory management is a prolific area of re-
search within programming language implementation research. The bookGarbage

Collection by Richard Jones and Rafael Lins [JL96] gives an excellent introduc-
tion to the area and has an extensive bibliography.

Bibliography

[Che70] C. J. Cheney. A non-recursive list compacting algorithm. Communi-

cations of the ACM, 13(11):677–678, 1970.

[Col60] George E. Collins. A method for overlapping and erasure of lists.
Communications of the ACM, 3(12):655–657, December 1960.

[GHG60] H. Gelernter, J. R. Hansen, and C. L. Gerberich. A Fortran-compiled
list processing language. Journal of the ACM, 7(2):87–101, April 1960.

[JL96] Richard Jones and Rafael Lins. Garbage Collection. John Wiley &
Sons, New York, 1996.

[McC60] John McCarthy. Recursive functinos of symbolic expressions and their
computation by machine. Communications of the ACM, 3:184–195,
1960.

[Min63] Marvin L. Minsky. A Lisp garbage collector algorithm using serial
secondary storage. Technical Report 58 (rev.), Project MAC, MIT,
Cambridge, MA, 1963.

19

