
CS4215—Programming Language

Implementation

Martin Henz

Friday 2 March, 2012

2

Chapter 10

rePL: Adding Data

Abstractions

The language simPL has one important deficiency; it lacks the possibility to
directly form complex data structures. We shall see in the first section that
functions can express data structures. However, this is syntactically compli-
cated and inefficient in practice. Therefore, we extend simPL in Section 10.2 by
records, which permit the programmer to directly define complex data struc-
tures. Section 10.3 gives examples of how to use this extension in practice.

To access record components, we introduce a new partial semantic function,
in addition to division. In Section 10.4, we take a fresh look at how to handle
exceptional situations arising from partial semantic functions, and how the pro-
grammer can control such situations. Section 10.5 covers an interpreter for the
rePL language, along the lines of the simPL interpreter.

We explore alternative evaluation strategies in the context of rePL in Sec-
tion 10.6. Section 10.7 shows a few programming techniques that become pos-
sible with one of these strategies.

Finally, we extend the virtual machine for simPL by instructions that allow
us to cover rePL’s data structures.

10.1 Data Structures in simPL

Data structures in simPL have to be expressed using functions. For example,
we can represent a pair containing the numbers 10 and 20 by the function

let p = fun i ->

if i=1 then 10 else 20 end

end

in ...

end

3

4 CHAPTER 10. REPL: ADDING DATA ABSTRACTIONS

In the body of the let, we can access the first component of the pair p by
applying p to the integer 1, and the second component by applying it to the
integer 2.

let ...

in ... (p 1) ... (p 2) ...

end

To construct such pairs, we can define a function

let pair =

fun x y ->

fun i ->

if i=1 then x else y

end

end

end

in ...

end

In the body of this let, we can now construct pairs as in

let p = (pair 10 20) in ... end

Thus in principle it is possible to use functions for expressing data structures.
This approach has several disadvantages:

• It is difficult to distinguish functions from data structures.

• The definition of data structures with many components gives rise to large
nested conditionals.

• The only values that we can use to access data structures are integers,
which makes it hard for the programmer to manipulate complex data
structures.

• The approach is inefficient, due to the function closures created and due
to the linear execution of nested conditionals.

Therefore, we shall introduce data structures directly in an extension of simPL
called rePL (record Programming Language).

10.2 Data Structures in rePL

The following rules for rePL programs result from the rules for simPL by re-
moving type declarations.

x n true false

10.2. DATA STRUCTURES IN REPL 5

E1 E2

p[E1, E2]

where p ∈ {|, &, +, -, *}

E

p[E]

where p ∈ {\}

For primitive operators, we use the infix and prefix notation for operators with
the associativity and operator precedences described in Section 5.2.

E E1 E2

if E then E1 else E2 end

E E1 · · · En

(E E1 · · ·En)

E

fun x1 · · ·xn -> E end

where x1, . . . , xn are pairwise distinct.

E

recfun f x1 · · ·xn -> E end

where f, x1, · · · , xn are pairwise distinct.

E1 · · · En E

let x1 = E1 · · · xn = En in E end

We introduce data structures in form of records. Records are bracket-
enclosed sequences of property-value associations. In rePL, properties are dis-
tinguished from identifiers by starting with a capital letter, whereas identifiers
in rePL must begin with a lower-case letter. For example, in rePL we can
represent a pair containing 10 and 20 as a record of the form

[First:10, Second:20]

Such records can be accessed by a new operator “.”, as in

let p = [First:10, Second:20]

in p.First + p.Second

end

Of course, records can appear inside of other records, as in the following record
representing a color point on the screen.

[X:100, Y:200, Color:[Red:255, Green:127, Blue:0]]

6 CHAPTER 10. REPL: ADDING DATA ABSTRACTIONS

Thus, we need the following syntactic rules accommodate record construction
and access in rePL.

E1 En

[q1:E1, . . . , qn:En]

E

E.q

where q, q1, . . . , qn denote properties.
In order to check if a record has a given property, we add an operator

E hasproperty q, which returns true, if the record that results from evalu-
ating E has the property q, and false otherwise.

One record is distinguished from all other records in that it has no proper-
ties. This record—denoted by []—is so important that we introduce a unary
primitive operator empty that tests whether its argument is []. The expression
empty [] returns true, whereas empty [SomeProperty:1] returns false.

E

p[E]

where p ∈ {\, empty}

As syntactic convenience, we introduce an abbreviation for records that rep-
resent pairs. We write E1::E2 as abbreviation for [First:E1, Second:E2].
The operator :: is right-associative; we can write 10 :: 20 :: 30 instead of
10 :: (20 :: 30).

A common pattern of usage of records is to construct lists. A list is either
empty—in which case it is represented by the empty record []—or a pair, whose
second component is also a list. The elements of the list are the first components
of the pairs that make up the list. A list containing the numbers 10, 20, 30, and
40 looks like this in rePL:

10 :: 20 :: 30 :: 40 :: []

10.3 Examples

The following function constructs a list with the first n even natural numbers.

let even = recfun even i counter done ->

if counter=done then []

else i :: (even i+2 counter+1 done)

end

end

in let evennumbers = fun n -> (even 2 0 n) end

in ...

end

end

The expression (evennumbers 3) returns the list

10.4. EXCEPTIONS 7

2 :: 4 :: 6 :: []

The following function computes the length of a given list.

recfun length xs ->

if empty xs then 0 else 1+(length xs.Second) end

end

Another example is the function map that applies a given function to all
elements of a list.

recfun map xs f -> if empty xs then []

else (f xs.First) :: (map xs.Second f)

end

end

To square every element of the list 1 :: 2 :: 3 :: [], we apply map to the
list and the square function

(map 1 :: 2 :: 3 :: [] fun x -> x * x end)

which returns 1 :: 4 :: 9 :: [].
An important function for list programming is the fold function that folds

a given list together, using a given function at every step.

recfun fold xs f start -> if empty xs then start

else (f xs.First

(fold xs.Second f start))

end

end

This function can be used for iteration over lists. For example, in order to
sum up all elements of the list 1 :: 4 :: 9 :: [], fold can be applied as
follows.

(fold 1 :: 4 :: 9 :: [] (fun x y -> x + y end) 0)

which returns 14.
A final syntactic convienience provides a notation for strings in rePL. Strings

are lists of characters, where characters are represented by their Latin-1 encod-
ing, defined by ISO 8859-1, see [cJS87]. Using this convention, we can write the
string "abc" as an abbreviation for the list 97 :: 98 :: 99 :: [].

10.4 Exceptions

In Section 7.6, we saw that an error value can adequately represent the only
exceptional behavior in the interpreter of simPL, namely the partial function di-
vision, which is undefined for the argument 0. In rePL, we added another partial
function, namely record access. Any attempt to access a property of a record

8 CHAPTER 10. REPL: ADDING DATA ABSTRACTIONS

that does not have that property is undefined. We would like to distinguish
between division by zero and such an invalid record access. The programmer
should be able to take appropriate corrective action, when either one of these
two exceptional situations arise.

What we need is a way to wrap an expression E1 such that when an exception
occurs in E1, its execution is terminated, and another expression E2 is executed
instead, to handle the exception. For example, the following expression tries to
evaluate a record input, which represents the input of the user of a calculator.
If an exception occurs, the user is asked for a new input.

try (evaluate input)

catch e

with if e hasproperty DivisionByZero

then (evaluate (readNewUserInput))

else ...

end

end

Note that in the expression following with, the variable e declared by catch

refers to a record that describes the exception. The exception record resulting
from a division by zero has the property DivisionByZero. Other properties of
the record may indicate the first argument of the division, and the filename and
line number division in the source code so that the programmer can locate the
error quickly.

The syntax of try expressions is given by the following rule.

E1 E2

try E1 catch x with E2 end

Invalid record access as in [].SomeProperty leads to an exception with the
property InvalidRecordAccess.

With the ability of “catching” exceptions in place, it seems natural that the
programmer should be able to create her own exceptions, and catch them. The
concept is called “throwing” an exception, and supported by rePL as follows.

E

throw E end

By throwing an exception, the programmer can define by herself what situa-
tions are considered exceptions in her programs. For example, the following pro-
gram fragment defines as exceptional any situation where a given percentage

value exceeds 100.

if percentage > 100 then

throw [PercentageExceeds100: true,

PercentageValue: percentage]

10.5. AN INTERPRETER FOR REPL 9

end

else ... end

The percentageExceeds100 exception can then be caught and handled by a
surrounding expression and handled appropriately.

10.5 An Interpreter for rePL

As usual, we proceed in steps. The first step, rePL0, consists of simPL (without
types) extended by records and the corresponding operators “.”, empty, and
hasproperty. The second step rePL1 adds the try . . . catch . . . and throw

expressions.

10.5.1 An Interpreter for rePL0

To support records, we extend our semantic domains as follows.

Sem. dom. Definition Explanation
Bool {true, false} ring of booleans
Int {. . . ,−2,−1, 0, 1, 2, . . .} ring of integers
EV Bool + Int + {⊥}+Fun+Rec expressible values
DV Bool + Int + Fun+Rec denotable values
Id alphanumeric string identifiers
Env Id DV environments
Fun DV ∗ · · · ∗DV EV function values
Rec Id DV records

Note that the functions that represent records look exactly like environments,
but are going to be used differently.

We need to add rules for record construction and the primitive operations
on records to the semantic function ·
 ·֌ ·. The rule for record construction
uses the usual extension formalism to construct a Rec value.

∆
 E1֌ v1 · · · ∆
 En֌ vn

∆
 [q1:E1, . . . , qn:En]֌ f

where f = ∅[q1 ← v1] · · · [qn ← vn]

Record access applies the record value to the given property.

∆
 E ֌ v

∆
 E.q֌ v′
where v′ = v(q)

The empty operator checks if the domain of the given record value is empty.

∆
 E ֌ v

∆
 empty E ֌ true

if dom(v) = ∅

10 CHAPTER 10. REPL: ADDING DATA ABSTRACTIONS

∆
 E ֌ v

∆
 empty E ֌ false

if dom(v) 6= ∅

The operator hasproperty similarly checks if a given property is in the
domain of the given record.

∆
 E ֌ v

∆
 E hasproperty q֌ true

if q ∈ dom(v)

∆
 E ֌ v

∆
 E hasproperty q֌ false

if q 6∈ dom(v)

10.5.2 An Interpreter for rePL1

Similar to the interpreter of simPL2, we introduce exception values Exc. Ex-
ceptions are represented by records.

Sem. dom. Definition Explanation
Bool {true, false} ring of booleans
Int {. . . ,−2,−1, 0, 1, 2, . . .} ring of integers
EV Bool + Int + Exc+ Fun+Rec expressible values
DV Bool + Int + Fun+Rec denotable values
Id alphanumeric string identifiers
Env Id DV environments
Fun DV ∗ · · · ∗DV EV function values
Rec Id DV records
Exc Rec exceptions

Note that we can distinguish exceptions from other records because of the dis-
joint union in the definition of EV.

Any expression whose evaluation encounters an exception evaluates to that
exception. As in Section 8.6, it is tedious to write down all possible cases. To
show the principle, we look at the case of addition, division and “.”.

∆
 E1֌ e

∆
 E1+E2֌ e

if e ∈ Exc

∆
 E1֌ v ∆
 E2֌ e

∆
 E1+E2֌ e

if v 6∈ Exc and e ∈ Exc

10.5. AN INTERPRETER FOR REPL 11

∆
 E1֌ v1 ∆
 E2֌ v2

∆
 E1+E2֌ v1 + v2

if v1, v2 6∈ Exc

Note that we need to be a bit more specific here than in Section 8.6, because
different exceptions can come from different arguments of the addition.

The first three rules for division are similar.

∆
 E1֌ e

∆
 E1/E2֌ e

if e ∈ Exc

∆
 E1֌ v ∆
 E2֌ e

∆
 E1/E2֌ e

if v 6∈ Exc and e ∈ Exc

∆
 E1֌ v1 ∆
 E2֌ v2

∆
 E1/E2֌ v1/v2

if v1, v2 6∈ Exc and v2 6= 0

The last rule for division covers the case that the meaning of the second argu-
ment of division is 0. We need to “raise the appropriate exception, corresponding
to the exceptional situation.

∆
 E1֌ v1 ∆
 E2֌ 0

∆
 E1/E2֌ e

if v1 6∈ Exc and where e = [DivisionByZero:true],

and e ∈ Exc

The rules are carefully designed to be non-overlapping, to avoid ambiguities
in the interpreter.

The rules for record access are as follows.

∆
 E ֌ e

∆
 E.q֌ e

if e ∈ Exc

∆
 E ֌ v

∆
 E.q֌ v′
if q ∈ dom(v) and where v′ = v(q)

∆
 E ֌ v

∆
 E.q֌ e

if q 6∈ dom(v) and where e =
[InvalidRecordAccess: true], and
e ∈ Exc

Finally, the meaning of throw expressions is defined as follows.

12 CHAPTER 10. REPL: ADDING DATA ABSTRACTIONS

∆
 E ֌ v

∆
 throw E end֌ e

if v ∈ Rec ∪Exc and where e = v, e ∈ Exc

Note the subtle point that in the evaluation of E, and exception e may occur.
In this case, the exception e will be thrown rather than the “intended” value of
E.

10.6 Pass-by-value, Pass-by-name, and Pass-by-

need

10.6.1 Pass-by-value

We have seen in previous chapters that evaluation of simPL programs is re-
stricted such that only values can be passed as parameters to functions. This
strategy of evaluating expressions is therefore called pass-by-value (In textbooks,
you find the term “call-by-value”.)

Pass-by-value enjoys a simplicity and efficiency that makes it the standard
parameter passing technique in programming. Imperative languages such as
Java, C, Pascal and functional programming languages such as SML, Ocaml,
LISP and Scheme all use pass-by-value parameter passing.

10.6.2 Pass-by-name

In this section, we modify the semantics of simPL such that the evaluation of
function parameters is delayed until their value is actually used in the function
body. Remember that function definitions evaluate to mathematical functions,
which take a denotable value as argument. Application applies these functions
to the evaluated argument. In order to describe pass-by-name, we need to allow
to pass the expression to be evaluated as argument. Whenever this expression
is needed during evaluation of the body of the function, it gets evaluated.

But what environment should be used when the expression gets finally eval-
uated? The standard answer is similar to the standard answer for function
definitions: The environment at the time of creation.

Thus we need to pass to the functions the expression that represents the
argument, together with the environment in which we need to evaluate it. The
data structures needed for call-by-name evaluation, containing an expression
and an environment with respect to which the expression is evaluated, is called
thunk.

10.6. PASS-BY-VALUE, PASS-BY-NAME, AND PASS-BY-NEED 13

Sem. dom. Definition Explanation
Bool {true, false} ring of booleans
Int {. . . ,−2,−1, 0, 1, 2, . . .} ring of integers
EV Bool + Int + Exc+ Fun+Rec expressible values
DV Bool + Int + Fun+Rec+Thunk denotable values
Id alphanumeric string identifiers
Env Id DV environments
Fun DV ∗ · · · ∗DV EV function values
Rec Id DV records
Exc Rec exceptions
Thunk rePL ∗Env thunks

Thus, denotable values can be thunks, which are pairs consisting of a rePL
expression (syntax) and an environment. The semantic function ·
 · ֌ ·
needs to be modified correspondingly. Evaluation of function definition remains
unchanged.

The evaluation of application simply passes thunks to the function to which
the first component evaluates.

∆
 E ֌ f

∆
 (E E1 . . . En) ֌ f((E1,∆), . . . , (En,∆))

Evaluation of identifiers needs to distinguish the case that the environment has
a thunk stored under the given identifier.

∆′
 E ֌ v

∆
 x֌ v

if ∆(x) is thunk of the form (E,∆′).

∆
 x֌ ∆(x)

if ∆(x) is not a thunk.

To get a similar behavior of by-name evaluation for let-expressions, we can use
the translation of let to application in the previous chapter.

10.6.3 Pass-by-need

Pass-by-need is an optimization of pass-by-name such that a given passed ex-
pression is evaluated at most once. That means once it is evaluated, the result
is remembered and the next access to the corresponding formal parameter uses
this value. This evaluation scheme is used by functional programming languages
like Haskell and Miranda. Pass-by-need is also called “delayed evaluation” or
“lazy evaluation”. Correspondingly, pass-by-value is called “eager evaluation”.

14 CHAPTER 10. REPL: ADDING DATA ABSTRACTIONS

10.7 Lazy Programming

In programming languages with pass-by-name or (more common) pass-by-need,
programming techniques become possible that are not easily expressible with
pass-by-value.

For example, we can define and access the (infinite) list of all integers as
follows.

let makeints = recfun makeints i ->

i :: (makeints i + 1)

end

in let allints = (makeints 0)

in allints.Second.Second.First

end

end

The expression (makeints 0) evaluates to a thunk. Since the evaluation of
arguments is delayed as much as possible, call-by-name and call-by-need are
also called “lazy” evaluation.

Only the record access operation triggers the computation of the list. Since
the body of makeints is also evaluated lazily, the list will be evaluated only up
to the second element. The result of the expression is the value 2.

We can continue this game and map the integers to their squares as in the
following.

let makeints = recfun makeints i ->

i :: (makeints i + 1)

end

in let allints = (makeints 0)

in

let allsquares = (map allints fun x -> x * x end)

in allsquares.Second.Second.First

end

end

end

This program evaluates to 4 in call-by-name.

10.8 A Virtual Machine for rePL

In this section, we extend the simPL virtual machine sVM to accommodate the
features of rePL, leading to the rePL virtual machine rVM. Sections 10.8.1, 10.8.2,
and 10.8.3 show the compilation and execution of record construction, record
operations, and handling and raising exceptions, respectively. Section 10.8.4
addresses efficiency issues regarding records in an implmentation of rVM.

10.8. A VIRTUAL MACHINE FOR REPL 15

10.8.1 Record Construction

To accommodate the compilation of record construction, we introduce the in-
structions LDPS q (LoaD Property Symbolic) and RCDS i (ReCorD Symbolic) as
follows (see Section 8.3).

s

LDPS q.s

s

RCDS i.s

where q is a property and i is an integer. The compiler uses these instructions
to compile records as follows.

E1 →֒ s1 · · · En →֒ sn

[q1:E1, . . . ,qn:En] →֒ LDPS q1.s1.LDPS qn.sn.RCDS n

We execute the LDPS instruction such that the property is pushed on the operand
stack.

s(pc) = LDPS q

(os, pc, e, rs)⇉s (q.os, pc+ 1, e, rs)

Consider the instruction sequence LDPS q1.s1.LDPS qn.sn.RCDS n resulting
from [q1:E1, . . . ,qn:En]. After execution of LDPS q1.s1.LDPS qn.sn, the
instruction RCDS n will find the association list for the record to be constructed
in reverse order on the operand stack. Therefore, the correct rule for executing
RCDS n is

s(pc) = RCDS n

(vn.qn.v1.q1.os, pc, e, rs)⇉s ({(q1, v1), . . . , (qn, vn)}.os, pc+ 1, e, rs)

Thus we simply push the function corresponding to the record (represented by
a set of pairs) onto the operand stack.

10.8.2 Operations on Records

The operations empty, “.”, and hasproperty are represented by respective rVM
instructions EMPTY, DOT, and HASP.

s

EMPTY.s

s

DOT.s

s

HASP.s

The compiler translates the operations as follows.

16 CHAPTER 10. REPL: ADDING DATA ABSTRACTIONS

E →֒ s

empty E →֒ s.EMPTY

E →֒ s

E . q →֒ s.LDPS q.DOT

E →֒ s

E hasproperty q →֒ s.LDPS q.HASP

The execution of these instructions is equally straightforward.

s(pc) = EMPTY

(v.os, pc, e, rs)⇉s (true.os, pc+ 1, e, rs)

if v = ∅

s(pc) = EMPTY

(v.os, pc, e, rs)⇉s (false.os, pc+ 1, e, rs)

if v 6= ∅

s(pc) = DOT

(q.v.os, pc, e, rs)⇉s (v
′.os, pc+ 1, e, rs)

if v(q) = v′

s(pc) = HASP

(q.v.os, pc, e, rs)⇉s (true.os, pc+ 1, e, rs)

if ∃vi.(q, vi) ∈ v

s(pc) = HASP

(q.v.os, pc, e, rs)⇉s (false.os, pc+ 1, e, rs)

if 6 ∃vi.(q, vi) ∈ v

10.8.3 Handling and Raising Exceptions

Division by zero and record access throw exceptions, which are records of a form
specified in Section 10.5.2. We introduce an rVM instruction THROW, which
throws the record it finds on top of the operand stack as an exception. For
division and record access to be able to throw exceptions, we find it convenient
to modify the compilation of rePL expressions.

The idea is to place instructions for raising these two exceptions at the end
of the instruction sequence. The instructions for division and record access can
then jump to those instructions if necessary.

10.8. A VIRTUAL MACHINE FOR REPL 17

E →֒ s1 [DivisionByZero:true] →֒ s2 [InvalidRecordAccess:true] →֒ s3

E ։ s1.DONE.s2.THROW.s3.THROW

We shall denote the beginning address of s2, which is |s1|+1, by addrDivisionByZero

and the beginning address of s3, which is |s1|+1+|s2|+1, by addrInvalidRecordAccess.
Division can now throw an exception as follows.

s(pc) = DIV

(0.i1.os, pc, e, rs)⇉s (os, addrDivisionByZero, e, rs)

Similarly, a failing record access can throw an exception as follows.

s(pc) = DOT

(q.v.os, pc, e, rs)⇉s (os, addrInvalidRecordAccess, e, rs)

if 6 ∃v.(q, v′) ∈ v

Not surprisingly, we translate throw expressions as follows.

E →֒ s

throw E end →֒ s.THROW

But what should the instruction THROW do? How can we exit the context
in which exception is thrown and find the appropriate exception? And, how
should try...catch...with...end expressions be translated and executed to
be able to catch any exceptions arising in its try expression?

The answer to these questions lies in the runtime stack. We can reuse the
runtime stack to keep track of the catch...with...end part of try expressions.
An exception that is thrown in the try part will then pop stackframes from the
runtime stack, until it finds the appropriate catch...with...end part.

We translate try statements as follows.

E1 →֒ s1 E2 →֒ s2

try E1 catch x with E2 end →֒ (TRY x |s1|+ 3).s1.ENDTRY.(GOTOR |s2|+ 1).s2

Note that the TRY instruction carries with it the catch identifier x and the
relative address of the with part. The try statement is executed by pushing a
special stack frame on the runtime stack, which remembers the catch identifier,
the current environment and the address of the with expression.

s(pc) = TRY x i

(os, pc, e, rs)⇉s (os, pc+ 1, e, (catch, x, pc+ i, os, e).rs)

The ENDTRY instruction pops the catch frame from the runtime stack.

18 CHAPTER 10. REPL: ADDING DATA ABSTRACTIONS

s(pc) = ENDTRY x i

(os, pc, e, (catch, x, pc+ i, os, e).rs)⇉s (os, pc+ 1, e, rs)

Finally, we are in the position to explain throwing of an exception. An exception
inspects the runtime stack in search for a catch stackframe. If the top frame
on the runtime stack is not marked as a catch frame, it is simply popped.

s(pc) = THROW

(os, pc, e, (pc, os, e).rs)⇉s (os, pc, e, rs)

In this case, the program counter is not advanced. The effect is that the THROW
instruction pops stack frames from the runtime stack until it finds a catch

frame. If the top frame is a catch frame, the THROW instruction installs the
operand stack of that frame. It extends the frame’s environment by a binding
of the catch variable to the exception, which is still on top of the operand stack.
Finally, it sets the program counter to the address stored in the stackframe.

s(pc) = THROW

(v.os, pc, e, (catch, x, pc′, os′, e′).rs)⇉s (os
′, pc′, e′[x← v], rs)

Since we are abusing the runtime stack to take note of try expressions, we need
to add a rule for the RTN instruction such that catch frames are ignored.

s(pc) = RTN n

(v.os, pc, e, (catch, x, pc′, os′, e′).rs)⇉s (v.os, pc, e, rs)

Like for normal frames in the instruction THROW, we refuse to advance pc in
this case. The result is that RTN pops stack frames until it finds a regular
(non-catch) frame.

10.8.4 Implementing Records in rVM

As given in Section 10.8.2, the instructions DOT and HASP have a major prob-
lem. The representation of records as a set of pairs forces these instructions
to inspect association after association, until the right one is found. The time
complexity of the instructions is therefore at least linear with respect to the size
of the records. Furthermore, since properties are strings, each handling of an
association requires a string operation. This section discusses how to overcome
these weaknesses.

The first crucial observation is that all properties that are used at runtime
appear syntactically in the expression being executed. Thus the compiler can
construct the set Q of all properties in a given expression E. The compiler can

10.8. A VIRTUAL MACHINE FOR REPL 19

calculate a bijection idp between Q and [0 . . . |Q| − 1]. In the resulting instruc-
tions, the compiler can replace every occurrence of a property q in an instruction
by idp(q). Similar to the implementation of sVM, which replaces identifiers by
integers, the implementation of rVM replaces properties by integers.

The compilation rules for record access and the operation hasproperty now
are as follows.

E →֒ s

E . q →֒ s.LDCI idp(q).DOT

E →֒ s

E hasproperty q →֒ s.LDCI idp(q).HASP

The second observation is that all records are constructed by the [...]

syntax, which explicitly lists all properties of the record. Thus the compiler can
calculate a bijection idr between the set R of all property sets of records that
can appear at runtime and the numbers [0 . . . |R| − 1].

Now, we give each property q of each record with properties q1, . . . , qn its
alphabetical position p(idr({q1, . . . , qn}), idp(q)), starting with 0. If a record
with index m does not have a property with index n, then we set p(m,n) = −1.

Example 10.1 Let us say the compiler assigns the number 13 to the set of
properties {a, b} (thus idr({a, b}) = 13), and the numbers 55 and 77 to the
properties a and b (idp(a) = 55 and idp(b) = 77), respectively. Then the position
of property a in the record [A:5 B:7] is given by p(13, 55) = 0, since a is the
alphabetically first property of the record. For any property identifier n 6= 55, 77,
we have p(13, n) = −1.

With these two observations in place, it is easy to see that we can represent
each record with properties q1, . . . , qn as a pair consisting of the record iden-
tifier idr({q1, . . . , qn}) and an array that maps the alphabetical position of q
in q1, . . . , qn given by p(idr({q1, . . . , qn}), idp(q)) to the corresponding property
value.

Example 10.2 In the example above, since p(13, 55) = 0 and p(13, 77) = 1, we
can represent the record [A:5 B:7] by the pair (13, [0 : 5, 1 : 7]).

The compiler now translates record construction as follows.

E1 →֒ s1 · · · En →֒ sn

[q1:E1, . . . ,qn:En]

→֒
LDCI idp(q1).s1.LDCI idp(qn).sn.RCD n idr({q1, . . . , qn})

20 CHAPTER 10. REPL: ADDING DATA ABSTRACTIONS

In order for the rVM to take advantage of this arrangement, the compiler needs
to pass the table p to the rVM. The new instruction RCD constructs an array,
whose indices corresponding to the record properties are given by p.

s(pc) = RCD n m

(vn.in.v1.i1.os, pc, e, rs)
⇉s

((m, {(p(m, i1), v1), . . . , (p(m, in), vn)}).os, pc+ 1, e, rs)

Note that the record is now represented by a pair consisting of the record index
m and the array containing the property values.

The instructions DOT and HASP now amount to array access using an index
that we look up using p. If DOT does not find an index, it raises an exception,
whereas HASP returns false in that case.

s(pc) = DOT

(i.(m, a).os, pc, e, rs)⇉s (a(j).os, pc+ 1, e, rs)

if p(m, i) = j, j ≥ 0

s(pc) = DOT

(i.(m, a).os, pc, e, rs)⇉s (os, addrInvalidRecordAccess, e, rs)

if p(m, i) = −1

s(pc) = HASP

(i.(m, a).os, pc, e, rs)⇉s (true.os, pc+ 1, e, rs)

if p(m, i) ≥ 0

s(pc) = HASP

(i.(m, a).os, pc, e, rs)⇉s (false.os, pc+ 1, e, rs)

if p(m, i) = −1

In summary, we have implemented record access operations such that they re-
quire constant time. To achieve this, the compiler replaces properties by inte-
gers, annotates record constructions with integers, and collects record-related
information in a lookup-table p, which it passes to the rVM. The rVM then
represents records by arrays, which are accessed by a record access instruction,
using the indices computed by the compiler.

Bibliography

[cJS87] Technical committee: JTC 1/SC 2. Information processing—8-bit
single-byte coded graphic character sets—part 1: Latin, alphabet no. 1.
Technical report, International Organization for Standardization, 1987.

21

