
CS4215—Programming Language

Implementation

Martin Henz

Thursday 15 March, 2012

2

Chapter 11

imPL: A Simple Imperative

Language

11.1 Introduction

So far, we considered only languages, in which an identifier refers to a value.
Once the value is computed, it does not change. Pass-by-need makes use of
this property by avoiding repeated evaluation; the resulting value would be the
same, anyway. A given identifier in a given environment always denotes the
same value. A given expression is always evaluated to the same value in a
given environment. Languages that have this property are called referentially
transparent. This property makes it particularly easy to formally define language
semantics and to reason about programs such as prove their correctness and
termination. The languages ePL, simPL and rePL are referentially transparent.

However, it is often convenient to deviate from referential transparency.
Many algorithms can be formulated more naturally in a language, in which
identifiers refer to locations of a random-access memory. An operation called
assignment allows to change the value stored in the memory location associ-
ated with an identifier. Languages with such a construct are called imperative
languages.

In this chapter, we examine the semantics and implementation of imperative
languages. We start with an extension of simPL by typical imperative constructs
such as assignment and loops, resulting in imPL0. In order to investigate param-
eter passing techniques, we extend imPL0 by records and property assignment,
resulting in imPL1. We will examine pass-by-value and pass-by-reference pa-
rameter passing, both for identifiers and for records, and pass-by-copy parameter
passing for records.

3

4 CHAPTER 11. IMPL: A SIMPLE IMPERATIVE LANGUAGE

11.2 imPL0: Imperative Programming

We extend the syntax of simPL by assignments, sequences and while-loops,
resulting in imPL0. As in rePL, we abandon simPL’s type declarations here.

Assignment. An assignment expression allows to change the value of an iden-
tifier to the result of evaluating an expression:

E

x := E

Sequence. A sequence expression allows to evaluate first on expression to
change the value of identifiers, and then evaluate another expression with
the changes in effect:

E1 E2

E1 ; E2

While-loop. A while loop allows to repeatedly evaluate an expression as long
as a boolean expression evaluates to true:

E1 E2

while E1 do E2 end

11.3 Examples

Example 11.1 The body of the following let expression repeatedly changes the
value of the identifier x. The results of evaluation of intermediate values are
ignored. They are only executed for their “side effect”, namely the changing of
the value of x.

let x = 0 in

x := 1;

x := x + 2;

x := x + 3;

x

end

11.4. DENOTATIONAL SEMANTICS OF IMPL0 5

Example 11.2 We now have the possibility to write interesting programs with-
out using recursion. An alternative function for computing the factorial function
is:

fun x ->

let i = 1 in

let f = 1 in

while \ i > x do

f := f * i;

i := i + 1

end;

f

end

end

end

Example 11.3 The GCD program can now be written as a loop:

let gcd = fun a b ->

while \(a = b) do

if a > b

then a := a - b

else b := b - a

end

end;

a

end

in

(gcd 6 10)

end

11.4 Denotational Semantics of imPL0

Of course, the language that we use to describe our denotational semantics,
namely mathematical notation, enjoys referential transparency. So the question
arises how to describe assignment in our denotational semantics.

Example 11.4 let x = 0 in

x := 1;

x := x + 2;

x := x + 3;

x

end

This program can only be understood in terms of its effect on the stored value
of x. In order to make the intuitive notion of “stored value” explicit in our
semantic framework, we introduce a new semantic domain, called the store. In

6 CHAPTER 11. IMPL: A SIMPLE IMPERATIVE LANGUAGE

that way we can say that the first assignment makes a binding of x to 1 in a given
store Σ, resulting in a new store Σ′. This new store is then used by the second
assignment, resulting in yet another store Σ′′ and so on. By introducing the
store, on which a program operates, we can describe the meaning of programs
in a referentially transparent way.

We are changing the semantic domains such that now, identifiers always
denote locations. These locations are used to access a store, which holds storable
values.

Domain name Definition Explanation
EV Int +Bool + Fun+ {error} expressible values
SV Int +Bool + Fun storable values
DV Loc denotable values
Fun DV ∗ · · · ∗DV ∗ Store (EV, Store) function values
Store Loc SV stores
Env Id DV environments

Environments now do not refer directly to values, but instead to locations.
These locations are then passed to stores in order to access the current value of
the identifier with respect to the store.

For stores Σ we introduce an operation Σ[l← v], which denotes a store that
works like Σ, except that Σ(l) = v (similar to the corresponding operation on
environments). The symbol ∅Store stands for the empty store, and similarly
∅Env stands for the empty environment.

Example 11.5 Let us say we have a store with the value 1 at location l

Σ = ∅Store[l← 1]

and an environment that carries the location l at identifier x

∆ = ∅Env[x← l]

Then we can access the value of x in the store as follows:

Σ(∆(x)) = 1

By introducing the store on which a program operates, we can describe the
meaning of programs in a referentially transparent way.

The semantic function · · now needs to be defined using a semantic
function · | · · · that gets a store as additional argument.

· · : imPL0→ EV

∅Store | ∅Env E (v,Σ)

E v

11.4. DENOTATIONAL SEMANTICS OF IMPL0 7

The semantic function · | · · · is defined as a four-argument relation
(ternary partial function):

· | · · · : Store ∗Env ∗ imPL0→ EV ∗ Store

The evaluation of let expressions works as follows (for clarity, we limit ourselves
to the case with only one definition):

Σ′[l1 ← v1] | ∆[x1 ← l1] E (v,Σ′′)

Σ | ∆ let {·} x1 = E1 in {·}E end (v,Σ′′)

if Σ | ∆ E1 (v1,Σ
′),

and
l1 is a new location, which
means Σ′(l1) is undefined

Correspondingly, the evaluation of identifiers needs to access the store.

Σ | ∆ x (Σ(∆(x)),Σ)

The semantic functions for assignment returns an updated store.

Σ | ∆ E (v,Σ′)

Σ | ∆ x := E (v,Σ′[∆(x)← v])

Example 11.6 ∅Store[l← 1] | ∅Env[a← l] a := 2 (2, ∅Store[l← 1][l← 2])
The resulting store ∅Store[l ← 1][l ← 2]) is of course the same as ∅Store[l ← 2].
The original binding of l to 1 is overwritten by the new value 2.

Note that assignment is defined to always evaluate to the value to which its
right hand side is evaluated. This choice is somewhat arbitrary, since typically,
assignments are carried out for their “side effect”, only, which means for the
effect they have on the store.

In an imperative language, the question arises what parameter passing means
when identifiers occur in argument position. Is the denotable value passed
directly to the function, or do we create a new location, and place the value of
the argument in the store at this new location? The first possibility is called
“pass-by-reference” and the second “pass-by-value”. We decide to use pass-by-
value for identifiers, following most modern imperative languages. The following
equations describe pass-by-value parameter passing. For simplicity, we only
treat single-argument functions here.

Σ | ∆ fun x -> E end (f,Σ)

where f(l,Σ′) = (v′,Σ′′),
where Σ′ | ∆[x← l] E (v′,Σ′′)

8 CHAPTER 11. IMPL: A SIMPLE IMPERATIVE LANGUAGE

Correspondingly, function application is defined as follows:

Σ | ∆ E1 (f,Σ′) Σ′ | ∆ E2 (v2,Σ
′′)

Σ | ∆ (E1 E2) f(l,Σ′′[l← v2])

where l is a new
location in Σ′′.

Note the different treatment of environments and stores in function definition
and application. Function values keep the environment of the function def-
inition, but drop the store of the function definition. Applications use the
environment of the function value, but the store resulting from the previous
expression.

The meaning of sequences is given by the following rule.

Σ | ∆ E1 (v1,Σ
′) Σ′ | ∆ E2 (v2,Σ

′′)

Σ | ∆ E1;E2 (v2,Σ
′′)

Note that the result v1 of evaluating the first component E1 of a sequence is
ignored. The result of the sequence is the result v2 of evaluating the second
component E2.

With while loops, we face the same problem as with recfun in simPL, namely
circularity in rules. We give the following specification for the meaning of loops.
A proper definition is beyond the scope of this course.

Σ | ∆ E1 (v1,Σ
′)

Σ | ∆ while E1 do E2 end (true,Σ′)

if v1 = false

The choice of true as the result of the expression is arbitrary; while loops are
executed for their effect on the store, and not for obtaining their “value”.

Σ | ∆ E1 (v1,Σ
′)

Σ | ∆ while E1 do E2 end (v,Σ′′′)

if v1 = true,
where Σ′ | ∆ E2 (v2,Σ

′′) and
Σ′′ | ∆ while E1 do E2 end

(v,Σ′′′)

This rule is circular, since the condition on the right hand side assumes a se-
mantics of while; as with recursive functions in simPL, a thorough discussion
of how to interpret such a circular rule is beyond the scope of this investigation.
None the less, the rule will serve us as a specification for implementing while
loops.

11.5. IMPL1: MUTABLE RECORDS 9

11.5 imPL1: Mutable Records

Aggregate values such as rePL’s records provide the opportunity to further
increase the expressive power of an imperative language. The idea is to add the
possibility of changing the value of an individual property in a record.

To this aim, we add record property assignment as a variant of assignment
to imPL.

E1 E2

E1.q:=E2

In order to capture the semantics of record property assignment, we need to
extend the semantic domains as follows:

Domain name Definition
EV Int +Bool + Fun+Rec+ {⊥}
SV Int +Bool + Fun+Rec
DV Loc
Rec Id Loc

Note that records are represented as partial functions mapping identifiers repre-
senting properties to locations. The semantic function · | · · · is extended
accordingly as follows.

Σ(0) | ∆ E1 (v1,Σ
(1)) Σ(n−1) | ∆ En (vn,Σ

(n))

Σ(0) | ∆ [q1:E1, . . . ,qn:En] (f,Σ′)

where l1, . . . , ln are new locations in Σ(n), Σ′ = Σ(n)[l1 ← v1] · · · [ln ← vn],
and f(qi) = li for 1 ≤ i ≤ n.

Σ | ∆ E (f,Σ′)

Σ | ∆ E.q (Σ′(f(q)),Σ′)

Σ | ∆ E1 (f,Σ′) Σ′ | ∆ E2 (v,Σ′′)

Σ | ∆ E1.q:=E2 (v,Σ′′[f(q)← v])

Similar to passing of identifiers, the question arises here how records are
passed to functions. Let us see what happens if a record is passed as argument
to a function. According to the definition of function application, we allocate a
new location in the store for the record. However, the locations in the record

10 CHAPTER 11. IMPL: A SIMPLE IMPERATIVE LANGUAGE

still refer to the original locations. Thus, assignments to record properties re-
main visible after returning from the function (pass-by-reference), whereas as-
signments to the record itself are not visible after returning from the function
(pass-by-value).

Example 11.7 We have a similar behavior in Java, when passing objects to
functions:

void f(MyClass myobject) {

myobject.myfield = 1;

myobject = new MyClass();

myobject.myfield = 2;

}

After returning from a call f(obj), the identifier obj still refers to the same
object (in the sense of object identity), whereas the field Myfield has changed
to 1.

Example 11.8 Records in imPL are passed similar to objects in Java. The
expression

let a = [Myfield: 0]

in

(fun b ->

b.Myfield := 1;

b := [Myfield: 2];

b.Myfield := 3

end

a);

a.Myfield

end

evaluates to the integer 1.

11.6 Pass-by-Reference Parameter Passing

In Section 11.4, we decided to pass arguments “by-value” to functions. In an
application (f x), the body of function f cannot change the value in the store
to which x refers. Instead, the function call creates a new location into which
the value is copied.

In this section, we explore an alternative to this scheme, called pass-by-
reference, similar to the treatment of records as arguments. When variables
appear as function arguments, we pass their location directly to the function,
instead of copying their value to a new location. Thus, we pass the reference to
the function, not the value. The semantic rule for function definition remains

11.7. PASS-BY-COPY PARAMETER PASSING 11

unchanged. The semantic rules for function application are as follows.

Σ | ∆ E1 (f,Σ′)

Σ | ∆ (E1 x) f(∆(x),Σ′)

In the case where the argument is not an indentifier, the old rule for application
applies.

Σ | ∆ E1 (f,Σ′) Σ′ | ∆ E2 (v2,Σ
′′)

Σ | ∆ (E1 E2) f(l,Σ′′[l← v2])

if E2 is not an identifier,
where l is a new location in Σ′′.

11.7 Pass-by-Copy Parameter Passing

In Section 11.5 we saw that a strange mix of pass-by-value and pass-by-reference
occurs when records are passed as arguments to functions. The argument record
itself is passed by-value, in a sense that assignments to the record parameter in
the function body does not affect the argument record. On the other hand, the
components of the record are passed by-reference; they can be changed in the
body and these changes are visible in the record after the function has returned.

In an alternative meaning of passing records, we could pass the record com-
ponents by-value. Since this semantics involves copying the record components
during function application, this parameter passing technique is called pass-by-
copy.

Σ | ∆ E1 (f,Σ′) Σ′ | ∆ E2 (v2,Σ
′′)

Σ | ∆ (E1 E2) f(l,Σ′′′)

if v2 ∈ Rec, where l, l′1, . . . , l
′

n
are new locations in Σ′′, {q1, . . . , qn} = dom(v2),

Σ′′′ = Σ′′[l← {(q1, l
′

1), . . . , (qn, l
′

n
)}] [l′1 ← Σ′′(v2(q1))] . . . [l

′

n
← Σ′′(v2(qn))]

11.8 Imperative Programming and

Exception Handling

The usual implementation of error handling in imperative programming is that
as soon as an error occurs, the current store is returned along with the error
value. For example, division by zero gets the following meaning.

12 CHAPTER 11. IMPL: A SIMPLE IMPERATIVE LANGUAGE

Σ | ∆ E1 (v1,Σ
′) Σ′ | ∆ E2 (0,Σ′′)

∆ E1/E2 (e,Σ′′)

if v1 6∈ Exc
and where e =
[divisionByZero:true],
and e ∈ Exc

In the rules for the try...catch...with...end expression, the store re-
turned by the try part is used in the with part.

Σ | ∆ E1 (v,Σ′)

Σ | ∆ try E1 catch x with E2 end (v,Σ′)

if v 6∈ Exc

Σ | ∆ E1 (v1,Σ
′) Σ′[l← v1] | ∆[x← l] E2 (v2,Σ

′′)

Σ | ∆ try E1 catch x with E2 end (v2,Σ
′′)

if v1 ∈ Exc
l new loc.

Thus, the changes to the store made in the try part are visible in the with

part although an exception has occurred. The reason for this design choice is
efficiency of implementation.

Arguably semantically more sound and intuitive would be a semantics that
uses the incoming store of the try...catch...with...end expression for eval-
uating the with part as shown in the following rule.

Σ | ∆ E1 (v1,Σ
′) Σ[l← v1] | ∆[x← l] E2 (v2,Σ

′′)

Σ | ∆ try E1 catch x with E2 end (v2,Σ
′′)

if v1 ∈ Exc
l new loc.

This would mean that a copy of the store would have to be saved for every
try...catch...with...end expression. In programming language practice,
this is infeasible. However, in databases, such a semantics is sometimes desir-
able. The corresponding technique is called “roll-back” and allows for recovery
from database inconsistencies.

11.9 A Virtual Machine for imPL

The semantics of imperative constructs is designed to allow for an efficient im-
plementation. The store is threaded through the entire run of the program.
We can prove for the semantics presented in this chapter that after a rule has
constructed a new store, the old store will never be used again.1 In an ac-
tual implementation, there is no need for constructing a new store in each rule.
We only need one copy of the store, and the operations in the store can be
destructive.

1Note that this property would be violated by a “roll-back” semantics for

try...catch...with... expressions.

11.9. A VIRTUAL MACHINE FOR IMPL 13

In Chapter 9, we saw already a technique for realistically representing the
data structures used in the machine. In the presented framework a heap allowed
us to explicitly manipulate the objects that are created at runtime. It turns out
that we can reuse the heap to provide a realistic implementation of imPL. We
can view the targets of edges in the heap as locations. Following this view,
the assignment expression simply changes the target node in the environment.
Chapter 9 already introduced an update operation in order to efficiently manip-
ulate stacks and other data structures on the heap. To implement assignment
in the heap, we shall reuse this update operation.

Let us first translate assignment expressions using a new instruction ASSIGNS

(Assign Symbolic) as follows.

E →֒ s

x := E →֒ s.ASSIGNS x

Thus the instruction ASSIGNS carries with it the identifier, whose location gets
a new value in the store, and finds that new value on the operand stack. Thus
its execution needs to update the heap such that the identifier x refers to the
new value.

s(pc) = ASSIGNS x

(os, pc, e, rs, h)⇉s (os, pc+ 1, e, rs, update(e, x, v, h′))

where (v, h′) = pop(os, h)

The compilation of sequences introduces the new instruction POP.

E1 →֒ s1 E2 →֒ s2

E1;E2 →֒ s1.POP.s2

The instruction POP simply pops the top entry from the operand stack and
ignores it. This corresponds to the denotational semantics of sequences, which
ignores the value of the first component.

s(pc) = POP

(os, pc, e, rs, h)⇉s (os, pc+ 1, e, rs, h′)

where (v, h′) = pop(os, h)

The compilation of while expressions reuses the JOFR, POP, GOTOR and LDCB

14 CHAPTER 11. IMPL: A SIMPLE IMPERATIVE LANGUAGE

instructions and thus does not require any new instructions.

E1 →֒ s1 E2 →֒ s2

while E1 do E2

→֒
s1.(JOFR |s2|+ 3).s2.POP.

(GOTOR − (|s1|+ 2 + |s2|)).LDCB true

Note that the GOTOR instruction jumps to the beginning of the code for E1,
which means that the condition will be re-evaluated in each iteration through
the loop. The result of the body of the while expression is ignored using POP,
and after the execution of the loop, the boolean value true is pushed as required
by the denotational semantics of while.

