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Chapter 13

cPL: A Simple Concurrent

Language

The languages covered so far are all sequential, meaning that the instructions of
the language are to be executed in a fixed order determined by the semantics of
the language. In denotational semantics, this was enforced by mechanisms such
as (1) insisting on function arguments to be values, and (2) using the ouput
store of the left hand side of a sequence as input store for the right hand side.

The world, however, is not sequential. Things happen concurrently, and
thus, computer programs that represent or simulate the real world, need to
account for this concurrency. In addition, the world of computing itself is
concurrent. Separate computers are running at the same time, and need to
communicate with each other. Both phenomena require computer programs to
represent concurrency.

The area of concurrent computation encompasses concurrent processing at
different levels of abstraction, as well as different hardware architectures. The
levels of abstraction range from the lowest level where parallel and pipelined
processing of machine instructions is handled, to the highest level, dealing with
concurrent and communicating processes. Hardware architectures giving rise to
concurrent computation range from single processor/single memory machines
(where concurrency is found at the level of CPU implementation) to large-scale
distributed computer networks, where concurrency is found at the highest levels,
namely between the nodes of the network.

Traditionally, we distinguish between coarse-grained message-passing con-
currency on one hand, and fine-grained shared-memory concurrency on the
other. Today, this distinction is getting blurred with the virtualization of com-
puting. Sometimes, it is not obvious where the actual computation happens
as remote processes are represented by local proxies. In message passing con-
currency, there are not many programming language issues; a treatment of this
style of concurrency is beyond the scope of this module.

By focussing on shared memory concurrency, we first explore the issue of
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spawning concurrent activity in a shared random-access memory framework
(Section 13.1). Section 13.2 discusses the consequences of threads that have ac-
cess to shared variables. Sections 13.3 and 13.4 look at the task of synchronizing
thread execution, and how these tasks are supported by existing concurrent pro-
gramming languages. Finally, Section 13.5 explores implementation techniques
for concurrent programming languages. In the tradition of this module, we use
a simple concurrent programming language cPL as a running example. The
language cPL is a slight syntactic extension of oPL, with minimal but sufficient
support for concurrent programming.

13.1 Spawning Concurrent Computation

The first and most straightforward programming language issue that arises in
shared-memory concurrent computation is how to initiate concurrent computa-
tion in a program. Most concurrent languages developed out of a traditional
sequential language, and it is deemed most practical to stick to sequential ex-
ecution as the default composition operator. In the context of the languages
imPL and oPL, this means that sequential composition is retained with its
conventional semantics. Following this approach, concurrent computation is
introduced as “communicating sequential processes”1.

Different languages have taken different choices here. Probably, the simplest
way is a thread ... end construct that spawns a new thread of computation.
For example, in a program

(f x);

thread (g y) end;

(h z)

the application (f x) is executed first. When the execution of (f x) termi-
nates, a concurrent thread for the execution of (f y) is created. This execution
proceeds concurrently on its own, while the original computation executes the
subsequent application (f x).

In this model, every program execution starts out with one (default) thread,
and each time, program execution encounters a thread...end expression, a
new thread is created and run concurrently. When the execution of the expres-
sion within thread...end terminates, the thread is discarded. This style of
creating concurrent computation is followed by languages such as Ada (using a
task...end syntax) and Oz (using thread...end).

Other languages take a slightly different choice. For example, the functional
language Chez Scheme makes use of functions as the way to specify what pro-
gram a new thread executes. The function application

(fork-thread (lambda () ...))

1Incidentally, this is also the name of a theoretical framework for modeling this style of
concurrent computation, see [Hoa85]
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Here, the program to be executed by the new thread is given by the body of
the zero-argument function that is passed as argument to the built-in function
fork-thread.

In object-oriented languages, such as Java, classes and objects are typically
used to spawn concurrent computation. In Java, the behavior of a thread is
described in a run() method of a class that extends a predefined class Thread.
An instance of a thread class is then started by invoking a start method.
Example:

class MyThread extends Thread {

public void run() { ... }

}

...

someThread = new MyThread();

someThread.start();

Sticking with simplicity as a primary goal for the languages covered here,
we choose the first approach for cPL. This way, we can treat object-oriented
programming and concurrent programming as orthogonal issues in cPL. Thus
we add the following rule to the syntax of cPL.

E

thread E end

In the framework of imPL/oPL, the question arises what the value of a thread...end
expression would be. The simplest solution is to assign a particular default value
as the result. Thus from the point of view of the spawning thread, the execution
of thread...end immediately evaluates to, say, the boolean constant true.

13.2 Shared Variables and Granularity of Con-

currency

Concurrent threads are executed independently from each other. The program-
mer does not have control over the relative speed of execution. In a language
with assignment, indeterminism arises when concurrent threads have access to
shared memory locations. Example:

let accountBalance = 20

in

let withdraw = fun x -> if x > accountBalance then false

else accountBalance := accountBalance - x;

true

end

end
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in

thread (withdraw 14) end;

thread (withdraw 17) end;

accountBalance

end

end

The intention of the withdraw function is not to allow the value of accountBalance
drop below 0. However, when we execute the two threads concurrently, both
could reach the test x > accountBalance at the same time. In this case, the
value of accountBalance is still 20, and therefore, both threads get to execute
the else-part. Let us say, the first thread executes the else-part first. In this case,
the value of accountBalance drops to 16. The second thread then would sub-
tract 17 from 16, resulting to a final balance of -1, an unintended consequence
of concurrent execution.

Before we address programming language features that can avoid such be-
havior, let us first take a closer look at concurrent access to shared memory.

When we have concurrent execution of expressions, the issue of granularity of
concurrency arises. The question is at what level concurrent behavior is really,
well, concurrent. Again, we have a spectrum of possibilities here. At the lowest
level, we have the physical reality of computer processors. When two processors
have access to the same memory location and try to simultaneously read or
write from the location, the behavior depends on the design of the processor.
Without specific precautions on the hardware level, simultaneous attempts to
write to the same memory location would lead to indeterministic behavior. On
this lowest level of abstraction, we would have no guarantee about the outcome
of the simultaneous execution of

accountBalance := 16

and

accountBalance := 13

The outcome could be that accountBalance is assigned to 16, or 13, or some
other integer that arises from electrical currents being applied to the memory
circuitry that corresponds to the location of accountBalance.

With such a low-level memory model, concurrent access to shared memory
is utterly unpredictable, and must be avoided at all cost. An extreme counter-
measure would be to enforce uninterrupted execution of every thread. There
would still be indeterminism with respect to the order in which threads are
chosen to be executed, but once chosen and executing, a thread has exclusive
access to all shared variables. While this approach would solve the problem of
concurrent assignment to shared variables, it would be very restrictive, and lead
to counter-intuitive behavior.

Most conventional languages choose a middle path. They allow concurrent
write access to shared memory locations at a well-defined level of granularity.
The idea is to define non-interruptable units of computation that are carried
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out by the threads. An obvious choice of granularity is the machine code.
In this approach, every machine instruction is executed sequentially without
interference from another thread. Concurrent execution only happens between
instruction executions. This approach is called “interleaving execution”, because
one can think of the execution as one single computation that executes a few
instructions in one thread, then stops executing in the current thread and jumps
to the next runnable thread, then to the next and so on.

Exercise 13.1 With interleaving semantics at the level of iVML instructions,

how many possible outcomes does the cPL program on page 6 have?

Exercise 13.2 Interleaving access to shared memory has subtle consequences

for programming language implementations. Explore Java’s keyword volatile,

and explain its consequences for interleaving concurrent write access.

For cPL, we choose interleaving execution at the level of oVML machine
instructions. This will allow for a simple yet realistic implementation of cPL,
based on the imPL virtual machine.

13.3 Mutual Exclusion

With interleaving semantics, the question arises how we can protect a code
section from being executed by multiple threads concurrently. In our account
example on page 6, we need to make sure that the body of the withdraw func-
tion is executed by only one thread at a time, so that the undesired behavior
described in Section 13.2 does not arise.

There are various approaches to support mutual exclusion in programming
languages. The first approach is to provide built-in functions that provide the
possibility of programming the mutual exclusion behavior. The classical set of
functions for this purpose is the semaphore [Dij68], which is provided by the
following two operations, which access a shared integer variable:

wait = fun s -> while ! s > 0 do true end;

s := s - 1

end

signal = fun s -> s := s + 1 end

These two operations need to be built-in in the language, since they need to
execute atomically, without interruption by another thread. The syntax of
imPL is used here just for illustration purposes.

In our tradition of simplicity, we choose semaphores as the language con-
struct of cPL to achieve mutual exclusion. The operations wait and signal are
provided as primitive operators in prefix notation in cPL, similar to the empty

operator. Thus, the programmer can write signal s and wait s.
With these two functions in place, we can re-implement our withdraw func-

tion as follows:
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let accountBalance = 20

s = 1

in

let withdraw = fun x -> wait s;

if x > accountBalance then false

else accountBalance := accountBalance - x;

true

end;

signal s

end

in ...

end

end

The execution of the first wait s by one thread will “close” the semaphore such
that no other thread can enter the critical section. Only after the first thread
executes signal s, the next thread gets its turn.

13.4 Monitors

Other languages provide more high-level support for mutual exclusion. An
example is the language Java, which allows the programmer to declare (non-
static) methods as synchronized. The execution of threads is restricted such that
only one synchronized method invocation can operate on the same object at a
time. If a thread A is already executing a synchronized method on an object,
the invocation of a synchronized method on the object by another thread B

leads to suspension of B’s execution. The thread B needs to “wait” until A has
left the synchronized method.

The problem of mutual exclusion for our account example can be solved in
Java as follows:

class account {

private int accountBalance;

public synchronized void withdraw(int x) {

if (x > accountBalance) false;

else accountBalance = accountBalance - x

}

}

Theads that execute on the same object can be seen as organized as a queue.
When a thread tries to enter a synchronized method for an object that is cur-
rently executing a synchronized method, the thread is placed into a queue of
threads that are waiting for this object. Note that synchronized methods can
call other methods (synchronized or not), which are also executed under mutual
exclusion. Only when a thread terminates execution of the first synchronized
method it started (through regular execution or through an exception), the next
thread that is waiting for the object is resumed.
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In addition to synchronized methods, Java supports a wait/notify mecha-
nism through which the threads can caordinate their activities. The two built-in
functions wait(), and notify() operate as follows:

• There are two ways for a thread to get into the queue, either by calling
a synchronized method while another thread is executing a synchronized
method on the object, or by calling wait().

• When a synchronized method call returns, or when a method calls wait(),
another thread gets access to the object.

• If a thread was put in the queue by a call to wait(), it must be “unfrozen”
by a call to notify() or notifyAll() before it can be scheduled for
execution again.

• The function notifyAll() unfreezes all threads that wait for the object,
whereas notify() picks a random waiting thread and unfreezes it.

The combination of synchronized methods and wait/notify is called monitor,
and was pioneered by Per Brinch Hansen in the context of the language Con-
current Pascal [BH75].

13.5 Implementation of Concurrent Constructs

For cPL, we are choosing interleaving execution of threads at the level of virtual
machine instructions. Thus, we are using the virtual machine for imPL/oPL as
starting point.

Threads are running independently, each with their own set of registers,
which include program counter, operand stack, environment and runtime stack.
When a thread terminates its execution, these registers need to be reliquished
so that the memory they occupied can be reused. In order to accomplish this,
we translate thread...end expressions as follows.

E →֒ s

thread E end →֒ STARTTHREAD |s+ 2|.s.ENDTHREAD

Interleaving is implemented on a sequential processor by switching execution
from thread to thread, also called “time-slicing”. In practice, this is done by
keeping a queue of threads in the machine, each with its own registers. The
machine picks a thread from the queue, and executes a certain number of in-
structions in that thread. Then it suspends the execution of the thread, and
starts execution of the next thread in the queue. Each time the machine moves
from one thread to another, the registers of the old thread are saved, and the
registers of the new thread are installed. This process is called context switching.
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Thus the execution of STARTTHREAD n creates a new thread in the machine,
sets the program counter of the new thread to the address after the instruction,
sets the environment of the new thread to the current environment, and ini-
tializes the operand and runtime stacks of the new thread to be empty stacks.
According to the convention on return values of thread expressions, the value
true is pushed on the operand stack of the old thread. The current program
counter is then incremented by n, which makes the old thread jump to the code
after the new thread.

Note that in this implementation, exception handling and threads are inter-
acting as follows. Exceptions raised in a thread do not have any effect outside
the thread. When the execution of a THROW instruction reaches the bottom of
the runtime stack, the executing thread is terminated. In this respect, oPL fol-
lows common practice among languages with threads and exception handling.
An interesting alternative would be to copy the current runtime stack to the
new thread upon thread creation, and to record the parent thread. In this case,
an exception in a thread could interrupt its parent thread and be handled by
the parent’s try expression.

The execution of the ENDTHREAD instruction simply deallocates the executing
thread object, along with its registers.

The semaphore primitives signal and wait are supported by primitive op-
erations that are translated to specific machine instructions.

signal v →֒ SIGNAL v wait v →֒ WAIT v

The execution of SIGNAL simply increments its semaphore variable.

s(pc) = SIGNAL x

(os, pc, e, rs, h) ⇉s (deref(e, x, h) + 1.os, pc+ 1, e, rs, update(e, x, deref(e, x, h) + 1))

Note that the heap is shared between different threads, and that other threads
are not represented in the rule.

The execution of WAIT checks whether the current value of the semaphore
variable is positive, and then decrements it.

s(pc) = WAIT x

(os, pc, e, rs, h) ⇉s (deref(e, x, h)− 1.os, pc+ 1, e, rs, update(e, x, deref(e, x, h)− 1))

if deref(e, x, h) > 0

If the current value is not positive, the WAIT instruction leaves the program
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counter unchanged.

s(pc) = WAIT x

(os, pc, e, rs, h) ⇉s (os, pc, e, rs, h)

if deref(e, x, h) ≤ 0

That means the executing thread keeps checking the semaphore variable. This
behavior is called busy waiting. Busy waiting is a common albeit inefficient
implementation technique for synchronization primitives.
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