Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition

Colour

Colour is everywhere!

You already know enough about colour?

Let's do a test...

So, there's a lot more to colour!

Human Colour Perception

• Human's eye has retina that senses light.

Colour

• Human's retina has 2 kinds of light receptors:

- Rods: sensitive to amount of light
- Cones: sensitive to lights of different wavelengths

Cones are sensitive to various colours Wavelengths from 400nm (violet) to 700nm (red)

• 3 kinds of cones:

Short (S): most sensitive to blue
Medium (M): most sensitive to green
Long (L): most sensitive to red

Colour

- Cones send signals to brain.
- Brain interprets mixture of signals as colours.
- That's why colours are coded with 3 values.
- Different coding schemes give different colour spaces.

Colour is coded with 3 values

(red, green, blue)

• Each value is an unsigned 8-bit value:

- (0, 0, 0) is black
- (255, 0, 0) is red
- o (0, 255, 0) is green
- (0, 0, 255) is blue
- o (128, 128, 128) is gray
- o (255, 255, 255) is white

HSV Colour Space

Code colour as hue, saturation, value. Also called HSB (B for brightness).

• Hue

- colour type
 0° (red) to 360°
- Saturation
 Colourfulness
 - 0 to 1 (full colour)
- Value
 - Brightness0 (black) to 1 (white)

• More intuitive than RGB.

HSL Colour Space

Code colour as hue, saturation, lightness.
 Similar to HSV, also called HLS.

Hue

- colour type
 0° (red) to 360°
- Saturation
 - Colourfulness
 - 0 to 1 (full colour)
 - Full saturation
 defined at L = 0.5
- Lightness
 0 (black) to 1 (white)

YCbCr Colour Space

Code colour as Y, Cb, Cr. Used for TV, video.

- Y: Iuminance
- Cb: blue difference
- Cr: red difference
- For unsigned 8-bit encoding, these values range from 0 to 255.
- Often confused with YUV.

Colour Difference

- Consider two colours C_1 and C_2 .
- How to measure difference between C_1 and C_2 ?
- Simplest difference measure: Euclidean distance

$$d(C_1, C_2) = \sqrt{(R_1 - R_2)^2 + (G_1 - G_2)^2 + (B_1 - B_2)^2}$$

• Straight line distance in RGB space.

Which colour looks more similar to the middle colour, left or right?

Perceptually Uniform Colour Spaces

- O RGB space is not perceptually uniform
 Equal colour distance ⇒ equal perceptual difference
 Inappropriate if need to match human perception.
- HSV, HSL, YCbCr also not perceptually uniform.
- Perceptually (more) uniform colour spaces:
 - Munsell colour space
 - **O CIELAB**
 - O CIELUB

Munsell Colour Space

• Code colour as hue, value, chroma.

- o chroma: colourfulness
- Difficult to use.

• CIE 1976 L*a*b* colour space

Colour

L* : matches human perception of lightness
 From 0 (black) to 100 (white).

CIELUV

- CIE 1976 L*u*v*
 - Similar to CIELAB colour space.
 - \circ L* : range from 0 to 100.
 - \circ u^{*}, v^{*}: typically range from -100 to +100.

Colour Arithmetic

- How to add, subtract, average colours correctly?
- If not careful, can produce invalid colours.

Addition

- With unsigned 8-bit, cannot have value > 255.
- Usually clip to maximum value.
- For example,

$$R = \begin{cases} R_1 + R_2 & \text{if } R_1 + R_2 < 255 \\ 255 & \text{otherwise} \end{cases}$$

• Similarly for G, B.

Colour

image 2

Subtraction

- With unsigned 8-bit, cannot have value < 0.
- Usually clip to minimum value.
- For example,

$$R = \begin{cases} R_1 - R_2 & \text{if } R_1 - R_2 > 0\\ 0 & \text{otherwise} \end{cases}$$

• Similarly for G, B.

Average

• Usual way of computing mean:

sum
$$S = \sum_{i=1}^{n} R_i$$

divide $M = \frac{1}{n}S$

 \circ With unsigned 8-bit value, S can overflow for small n.

 \circ Clipping S produces inaccurate average.

Need better methods.

Average

• Method 1: Floating point representation.

 \circ Then, *S* doesn't overflow unless *n* is very large.

 \circ S is not a valid colour value.

• Mean $M = \frac{1}{n}S$ truncated to unsigned 8-bit is valid.

Average

• Method 2: Incremental average

• With only 1 colour R_1 , mean = R_1

$$M_1 = R_1$$

 \circ With two colours R_1 , R_2 ,

$$M_{2} = \frac{1}{2} \left(R_{1} + R_{2} \right) = \frac{1}{2} M_{1} + \frac{1}{2} R_{2}$$

• With k colours R_1, R_2, \ldots, R_k ,

$$M_{k} = \frac{1}{k} \left(R_{1} + \dots + R_{k} \right) = \frac{k-1}{k} M_{k-1} + \frac{1}{k} R_{k}$$

$$OM_k, \frac{k-1}{k}M_{k-1}, \frac{1}{k}R_k$$
 are all valid colours.

imagen 2

Colour

imagen 2

mean over 8-sec video

Colour-Difference Equations

- Consider a reference colour C_0 .
- Euclidean distance of C_1 from C_0 in CIELAB / CIELUV space:

$$\Delta E_{ab}^* = \left[(\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2 \right]^{1/2}$$
$$\Delta L^* = L_1^* - L_0^*$$
$$\Delta a^* = a_1^* - a_0^*$$
$$\Delta b^* = b_1^* - b_0^*$$

• More perceptually uniform than in RGB space.

• Can also define as:

$$\Delta E_{ab}^* = \left[(\Delta L^*)^2 + (\Delta C_{ab}^*)^2 + (\Delta H_{ab}^*)^2 \right]^{1/2}$$

$$\Delta C_{ab}^* = C_{ab,1}^* - C_{ab,0}^* = (a_1^{*2} + b_1^{*2})^{1/2} - (a_0^{*2} + b_0^{*2})^{1/2}$$

$$\Delta H_{ab}^* = [(\Delta E_{ab}^*)^2 - (\Delta L^*)^2 - (\Delta C_{ab}^*)^2]^{1/2}$$

- Further improvements: CIE94, CMC, BFD.
- More perceptually uniform than Euclidean distance in CIELAB / CIELUV colour space.
- CIE94

$$\Delta E_{94}^{*} = \left[\left(\frac{\Delta L^{*}}{k_{L}S_{L}} \right)^{2} + \left(\frac{\Delta C_{ab}^{*}}{k_{C}S_{C}} \right)^{2} + \left(\frac{\Delta H_{ab}^{*}}{k_{H}S_{H}} \right)^{2} \right]^{1/2}$$

$$S_{L} = 1$$

$$S_{C} = 1 + 0.045 \, \bar{C}_{ab}^{*}$$

$$S_{H} = 1 + 0.015 \, \bar{C}_{ab}^{*}$$

$$k_{L} = k_{C} = k_{H} = 1 \text{ for reference conditions}$$

$$\bar{C}_{ab}^{*} = \sqrt{C_{ab,0}^{*}C_{ab,1}^{*}}$$

Summary

- Colours have 3 components.
- Most colour spaces are not perceptually uniform.
- CIELAB/CIELUV are perceptually more uniform.
- Be careful with colour arithmetic.
- Use appropriate colour-difference equation.

Further Reading

Conversion formulae for colour spaces
 OpenCV user guide
 Wikipedia

- Colour-difference equations: [Leow2002]
- CIE94, CMC, BFD: [Berns2000, Leow2002]

References

- R. S. Berns. Billmeyer and Saltzman's Principles of Color Technology. John Wiley & Sons, 3 edition, 2000.
- W. K. Leow, Color Spaces and Color-Difference Equations. Tech Report, NUS, 2002.