Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition

Image Warping and Morphing

Morphing is artistic

Morphing is captivating!

Morphing is dynamic!

Morphing is fun!

Morphing is fun!

Two kinds of morphing

Image morphing
 2D

our focus

- Object morphing
 - 2D: like image morphing
 - 3D: more complex

Image Warping & Morphing

- Involves 3 things
 - Spatial transformation

Colour transfer

image warping

Continuous transition

Image Warping & Morphing

Involves 3 things

- Spatial transformation
- O Colour change
- O Continuous transition

Spatial Transformation

• Simplest form: affine transformation

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Source (x, y)

translation

Source (x, y)

$$\begin{bmatrix} 0.8 & 0 & 0 \\ 0 & 1.2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Target (u, v)

scaling

Source (x, y)

Target (u, v)

shearing

parallel lines remain parallel

Source (x, y)

 $\begin{bmatrix} \cos & -\sin & 0 \\ \sin & \cos & 0 \\ 0 & 0 & 1 \end{bmatrix}$

rotation

parallel lines remain parallel

• To solve for affine matrix:

• For i = 1, ..., n, arrange into two matrix equations:

$$\begin{bmatrix} x_1 & y_1 & 1 \\ \vdots & \vdots & \vdots \\ x_n & y_n & 1 \end{bmatrix} \begin{bmatrix} a_{11} \\ a_{12} \\ a_{13} \end{bmatrix} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$
$$\begin{bmatrix} x_1 & y_1 & 1 \\ \vdots & \vdots & \vdots \\ x_n & y_n & 1 \end{bmatrix} \begin{bmatrix} a_{21} \\ a_{22} \\ a_{23} \end{bmatrix} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$

• Then, solve each equation using linear least square.

Perspective Transformation

• Generalisation of affine transformation:

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- Looks like a linear equation.
- But, perspective transformation is nonlinear.
- Will discuss further later.

Polynomial Transformation

• Described by polynomial equations

$$u = \sum_{k} \sum_{l} a_{kl} x^{k} y^{l}$$
$$v = \sum_{k} \sum_{l} b_{kl} x^{k} y^{l}$$

• Example: 2nd-order polynomial, e.g., quadratic

$$u = a_{20}x^2 + a_{02}y^2 + a_{11}xy + a_{10}x + a_{01}y + a_{00}$$

$$v = b_{20}x^2 + b_{02}y^2 + b_{11}xy + b_{10}x + b_{01}y + b_{00}$$

In matrix form

Solving the parameters is easy!
 Just like for the affine case (exercise).

$$\begin{bmatrix} 0 & 0 & 0.1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Source (x, y)

tapering / perspective distortion Target (u, v)

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -0.1 & 0 & 1 & 0 \end{bmatrix}$$

Source (x, y)

tapering / perspective distortion Target (u, v)

$$\begin{bmatrix} 0.1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -0.1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Source (x, y)

expansion / compression

Target (u, v)

$$\begin{bmatrix} 0 & 0.1 & 0 & 1 & 0 & 0 \\ -0.1 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Source (x, y)

Target (u, v)

warping

General Transformation

 \odot General form of u and v

• Possible kernel functions:

- O Affine
- O Polynomial
- Splines: B-splines, cubic splines, etc.
- Thin-plate spline: model physical bending energy

Which kernel to use?

- General guidelines
 - Sufficient to capture transformation
 - Not overly complex

- Fit affine transformation.
- Correct transformation, small error.

- Fit affine transformation.
- Incorrect transformation, large error.

• Fit quadratic transformation.

• Looks correct, small error; but can over fit.

- Fit quadratic transformation.
- Correct transformation, small error.

Image Warping & Morphing

Involves 3 things

O Spatial transformation

Colour transfer

O Continuous transition

Colour Transfer

- Determine colour in transformed image.
- Remember to use backward mapping plus bilinear interpolation

Colour Transfer

• Forward mapping

Copy colour of p in I to q in I'.

• But q is at real-valued coordinates; problem.

Colour Transfer

• Backward mapping

- \circ Map q in *I* to p in *I*.
- Use bilinear interpolation to determine colour of p.
 Copy colour of p to q.

Image Warping ExampleWith quadratic mapping

Why so much distortion?

• With quadratic mapping

• With quadratic mapping

• With quadratic mapping

Local Transformation

- Divide image into regions.
- Warp each region by a different transform.
 - Ensure changes over boundaries are smooth.
- Achieve finer control.

Summary

- Need to mark good corresponding points.
- Lower-order function may not warp enough.
- Higher-order function can lead to distortions.
- Local transformations give finer control.

Image Warping & Morphing

Involves 3 things

- **O** Spatial transformation
- O Colour transfer
- Continuous transition

Image Morphing

- Basic ideas:
 - Want positions to change smoothly.
 - Want colours to change smoothly.

CS4243

Image Morphing

• Simplest transition: linear

 $\mathbf{r}_{i}(t) = (1-t)\mathbf{p}_{i} + t\mathbf{q}_{i} \quad 0 \le t \le 1$ \mathbf{r}_i $\mathbf{p}_i \circ$ $\circ \mathbf{q}_i$ morphing 0 37 0 path

• Morphing path is actually like this:

Image Morphing

- Set time step $\Delta t = 1$ / number of frames.
- Repeat for $0 \le t \le 1$

• Warp I to I(t) by mapping \mathbf{p}_i to $\mathbf{r}_i(t)$.

• Warp J to J(t) by mapping \mathbf{q}_i to $\mathbf{r}_i(t)$.

• Blend I(t) and J(t) into M(t)

$$M(t) = (1 - t) I(t) + t J(t)$$

• Save M(t) into a video.

Example

Arsamingepfearonlier?

Summary

• For seamless morphing

• Match all corresponding features.

• Need accurate transformation.

• For smooth morphing

○ Use smaller time step.

Further Reading

- More sophisticated image warping: [Wolberg90].
- More sophisticated image morphing: [Lee96]

References

- S.-Y. Lee and S. Y. Shin. Warp generation and transition control in image morphing. In *Interactive Computer Animation*. Prentice Hall, 1996.
- G. Wolberg. *Digital Image Warping*. IEEE Computer Society Press, 1990.