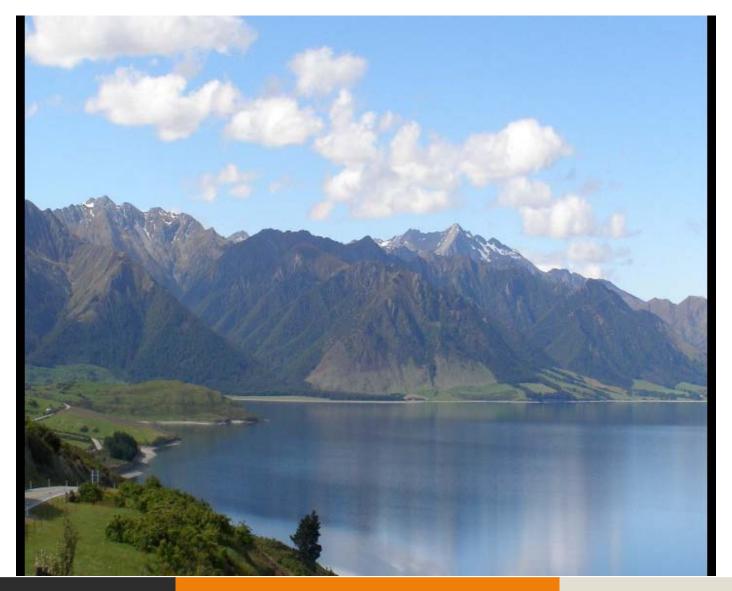
Leow Wee Kheng
CS4243 Computer Vision and Pattern Recognition

Motion Tracking

Changes are everywhere!

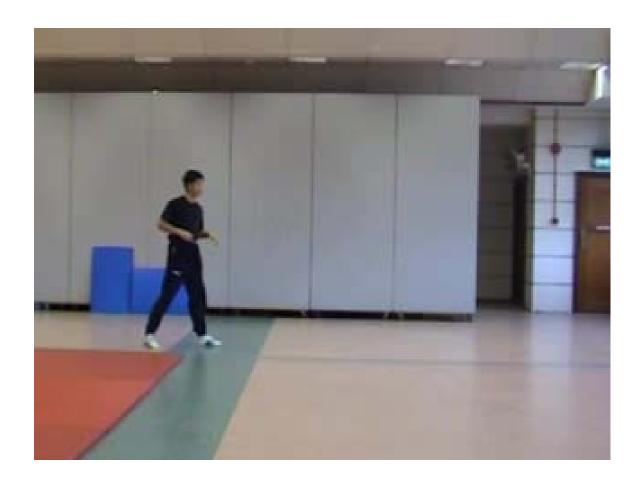
2

Illumination change

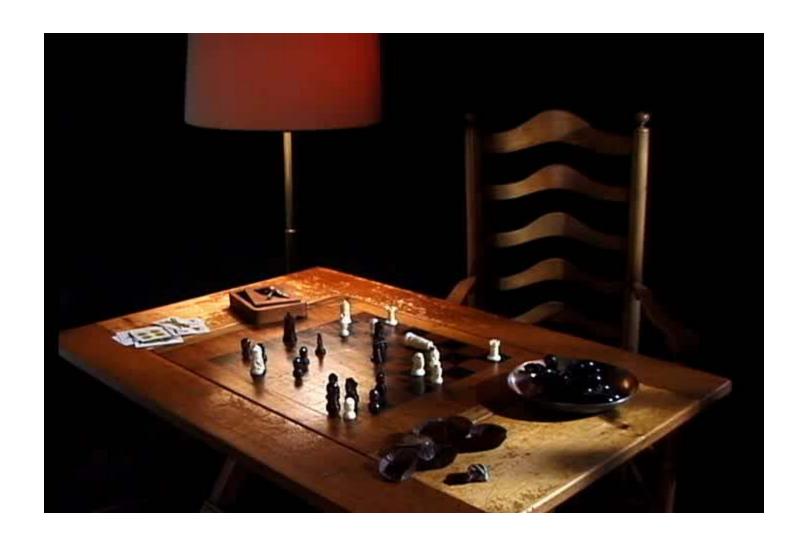


Shape change

Object motion

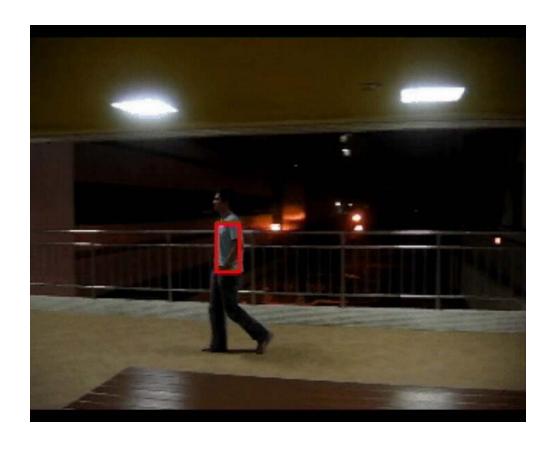


Camera motion



6

Object & camera motion



Everything changes!

Motion analysis is tough in general!

We focus on object / camera motion.

Change Detection

- Detects any change in two video frames.
- Straightforward method:
 - Compute difference between corresponding pixels:

$$D_t(x,y) = |I(x,y,t+1) - I(x,y,t)|$$

- O(1) I(x, y, t): intensity / colour at (x, y) in frame t.
- $oldsymbol{o}$ If $D_t(x,y)$ > threshold, has large difference.

Any difference?

No

Any difference?

Yes, illumination change

Any difference?

Yes, position change

Change Detection

- Can detect
 - Illumination change
 - Position change
 - Illumination and position change
- But, cannot distinguish between them.
- Need to detect and measure position change.

Motion Tracking

- Two approaches
 - Feature-based
 - Intensity gradient-based

Feature-based Motion Tracking

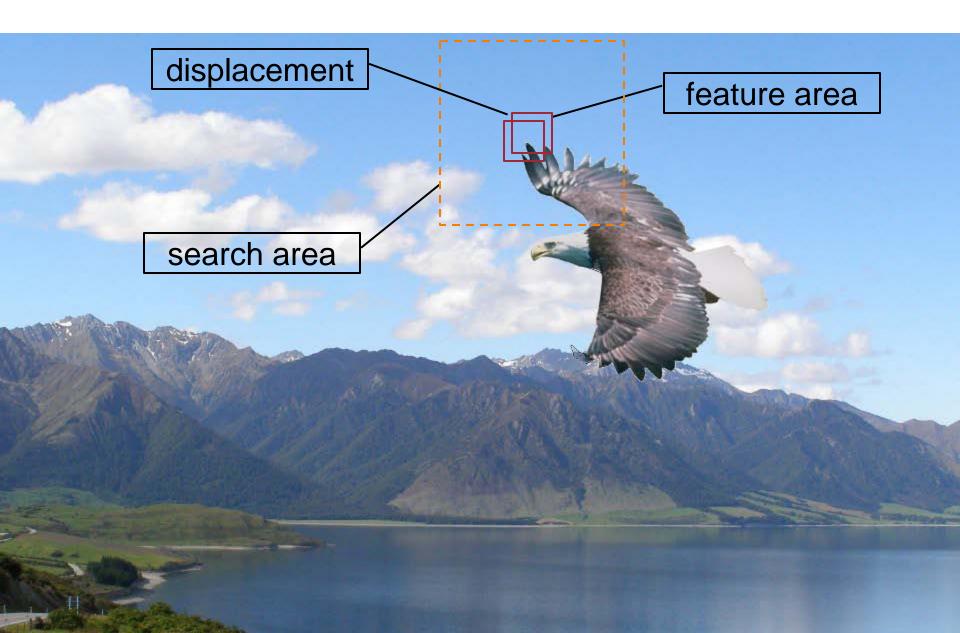
Look for distinct features that change positions.

- Eagle's wing tips change positions.
- Tree tops don't change positions.

Basic Ideas

- 1. Look for distinct features in current frame.
- 2. For each feature
 - Search for matching feature within neighbourhood in next frame.
 - Difference in positions → displacement.
 - Velocity = displacement / time difference.

Basic Ideas



What feature to use?

- Harris corner
- Tomasi's feature
- Feature descriptors: SIFT, SURF, GLOH, etc.
- Others

Summary

- Simple algorithm.
- Can be slow if search area is large.
- Can constrain search area with prior knowledge.

Gradient-based Motion Tracking

- Two basic assumptions
 - Intensity changes smoothly with position.
 - Intensity of object doesn't change over time.
- Suppose an object is in motion.
 - Change position (dx, dy) over time dt.
 - O Then, from 2nd assumption:

$$I(x + dx, y + dy, t + dt) = I(x, y, t)$$

Apply Taylor's series expansion:

$$I(x+dx,y+dy,t+dt) = I(x,y,t) + \frac{\partial I}{\partial x}dx + \frac{\partial I}{\partial y}dy + \frac{\partial I}{\partial t}dt + \cdots$$

Omit higher order terms and divide by dt

$$\frac{\partial I}{\partial x}\frac{dx}{dt} + \frac{\partial I}{\partial y}\frac{dy}{dt} + \frac{\partial I}{\partial t} = 0$$

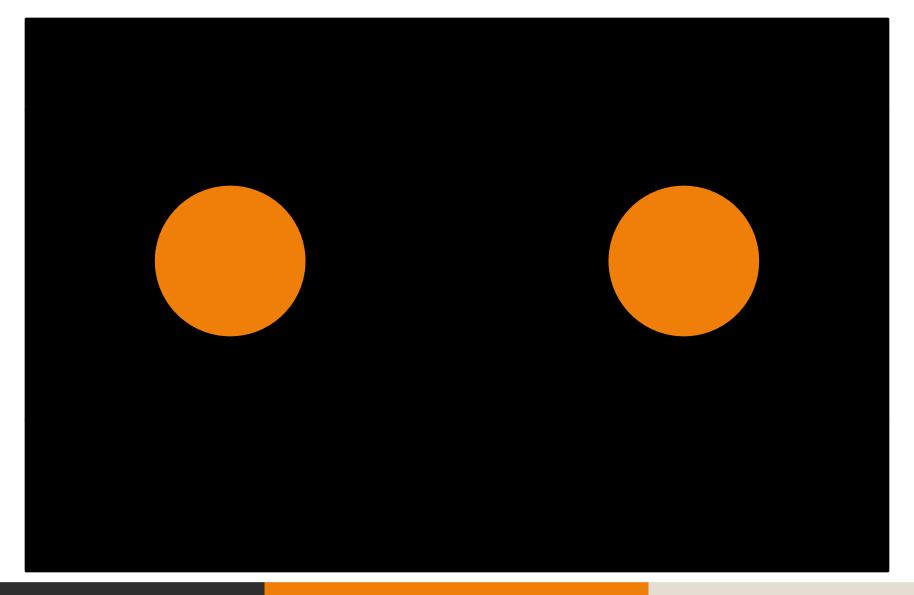
Denote

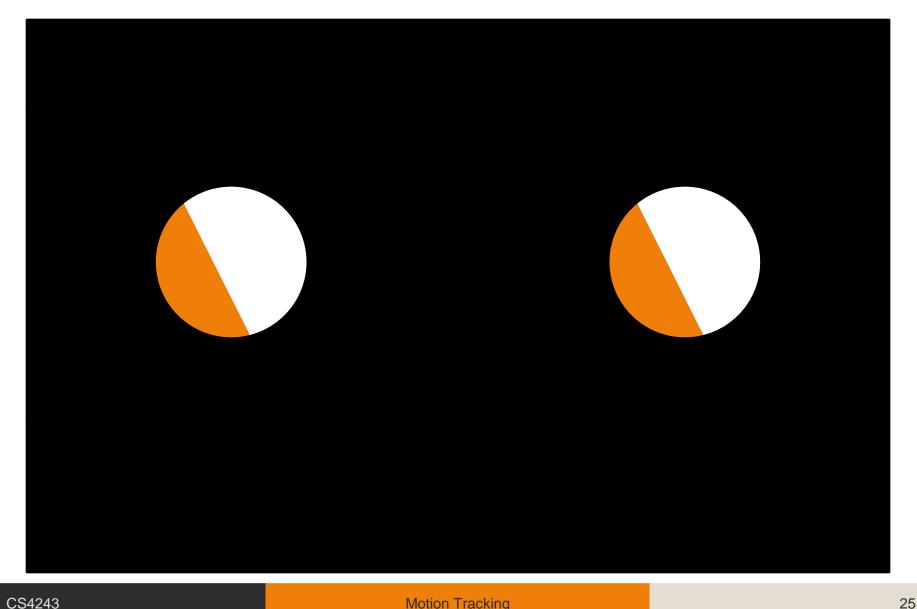
$$u = \frac{dx}{dt}$$
, $v = \frac{dy}{dt}$, $I_x = \frac{\partial I}{\partial x}$, $I_y = \frac{\partial I}{\partial y}$, $I_t = \frac{\partial I}{\partial t}$.

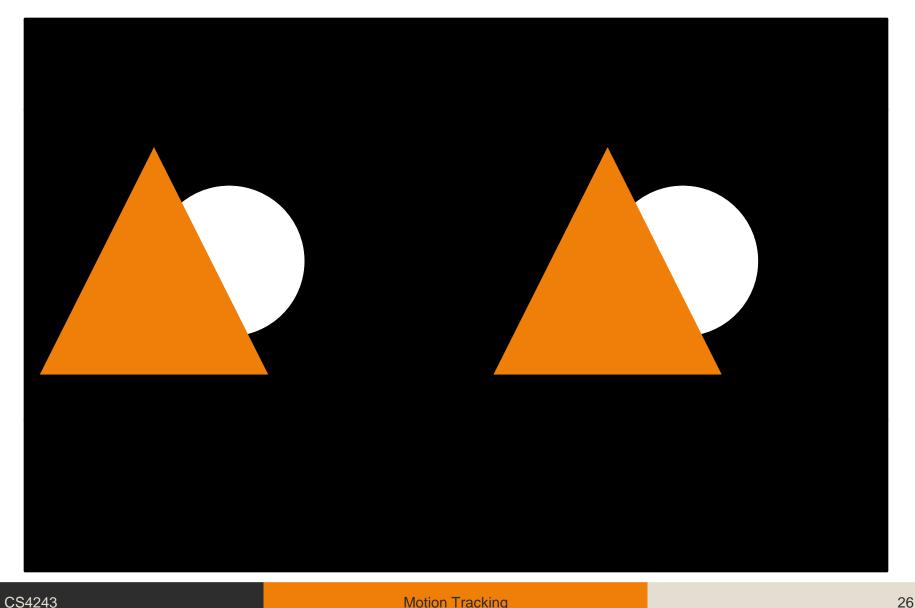
O Then,

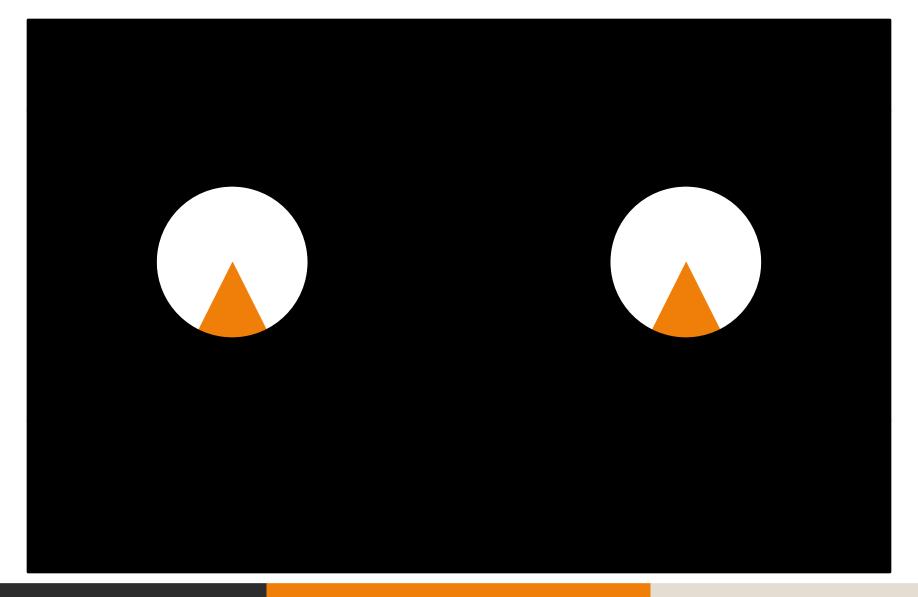
$$I_x u + I_y v + I_t = 0$$

- o u, v are unknown.
- 2 unknowns, 1 equation: can't solve!









28

Aperture Problem

Homogeneous region

$$I_x u + I_y v + I_t = 0$$

- $O_{x} = I_{y} = I_{t} = 0.$
- No change in local region.
- Cannot detect motion.

Aperture Problem

Edge

$$I_x u + I_y v + I_t = 0$$

- O I_x and I_y are zero along edge
- Cannot measure motion tangential to edge
- O I_x and I_y are non-zero normal to edge
- Can measure motion normal to edge
- So, cannot measure actual motion

Aperture Problem

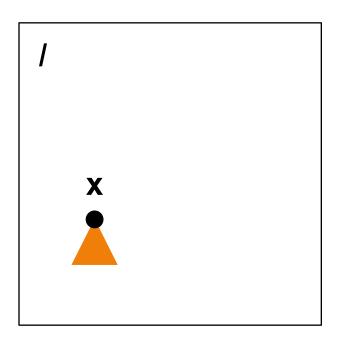
Corner

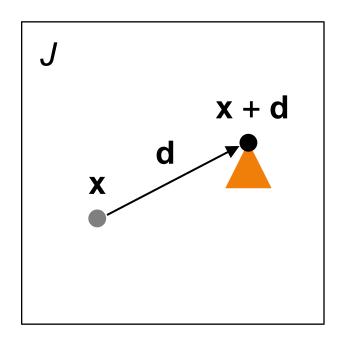
$$I_x u + I_y v + I_t = 0$$

- \circ I_x and I_y are non-zero in two perpendicular directions
- 2 unknowns, 2 equations
- Can measure actual motion

Lucas-Kanade Method

Consider two consecutive image frames I and J:





- Object moves from $\mathbf{x} = (x, y)^T$ to $\mathbf{x} + \mathbf{d}$.
- $oldsymbol{o}$ **d** = $(u, v)^T$

So,

$$J(\mathbf{x} + \mathbf{d}) = I(\mathbf{x})$$

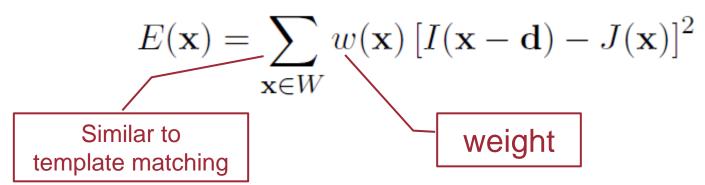
Or

$$J(\mathbf{x}) = I(\mathbf{x} - \mathbf{d})$$

• Due to noise, there's an error at position x:

$$e(\mathbf{x}) = I(\mathbf{x} - \mathbf{d}) - J(\mathbf{x})$$

Sum error over small window W at position x:



33

- If E is small, patterns in I and J match well.
- So, find d that minimises E:
 - Set $\partial E / \partial \mathbf{d} = 0$, compute **d** that minimises *E*.
 - \circ First, expand $I(\mathbf{x} \mathbf{d})$ by Taylor's series expansion:

$$I(x - u, y - v) = I(x, y) - u I_x(x, y) - v I_y(x, y) + \cdots$$

Omit higher order terms:

$$I(x - u, y - v) = I(x, y) - u I_x(x, y) - v I_y(x, y)$$

Write in matrix form:

$$I(\mathbf{x} - \mathbf{d}) = I(\mathbf{x}) - \mathbf{d}^{\mathsf{T}} \mathbf{g}(\mathbf{x})$$
 $\mathbf{g}(\mathbf{x}) = \begin{bmatrix} I_x(\mathbf{x}) \\ I_y(\mathbf{x}) \end{bmatrix}$

Intensity gradient

34

○ Now, error *E* at position **x** is:

$$E(\mathbf{x}) = \sum_{\mathbf{x} \in W} w(\mathbf{x}) \left[I(\mathbf{x}) - J(\mathbf{x}) - \mathbf{d}^{\mathsf{T}} \mathbf{g}(\mathbf{x}) \right]^{2}$$

Now, differentiate E with respect to d (exercise):

$$\frac{\partial E}{\partial \mathbf{d}} = -2\sum_{\mathbf{x} \in W} w(\mathbf{x}) \left[I(\mathbf{x}) - J(\mathbf{x}) - \mathbf{d}^{\mathsf{T}} \mathbf{g}(\mathbf{x}) \right] \mathbf{g}(\mathbf{x})$$

○ Setting $\partial E / \partial \mathbf{d} = 0$ gives **b**

Setting
$$\partial E / \partial \mathbf{d} = 0$$
 gives \mathbf{D} the only unknown
$$\sum_{\mathbf{x} \in W} w(\mathbf{x}) \left[I(\mathbf{x}) - J(\mathbf{x}) \right] \mathbf{g}(\mathbf{x})$$

$$= \sum_{\mathbf{x} \in W} w(\mathbf{x}) \mathbf{d}^{\top} \mathbf{g}(\mathbf{x}) \mathbf{g}(\mathbf{x}) = \sum_{\mathbf{x} \in W} w(\mathbf{x}) \mathbf{g}(\mathbf{x}) \mathbf{g}^{\top}(\mathbf{x}) \mathbf{d}$$

So, we get

$$\mathbf{Z} \mathbf{d} = \mathbf{b}$$

$$\mathbf{Z} = \begin{bmatrix} \sum_{\mathbf{x} \in W} w \, I_x^2 & \sum_{\mathbf{x} \in W} w \, I_x \, I_y \\ \sum_{\mathbf{x} \in W} w \, I_x \, I_y & \sum_{\mathbf{x} \in W} w \, I_y^2 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} \sum_{\mathbf{x} \in W} w \, (I - J) \, I_x \\ \sum_{\mathbf{x} \in W} w \, (I - J) \, I_y \end{bmatrix}$$

- \circ 2 unknowns, 2 equations. Can solve for $\mathbf{d} = (u, v)$.
- What happen to aperture problem? Did it disappear?

Lucas-Kanade + Tomasi

- Lucas-Kanade algorithm is often used with Tomasi's feature
 - Apply Tomasi's method to detect good features.
 - Apply LK method to compute d for each pixel.
 - Accept d only for good features.

37

Example

Can you spot tracking errors?

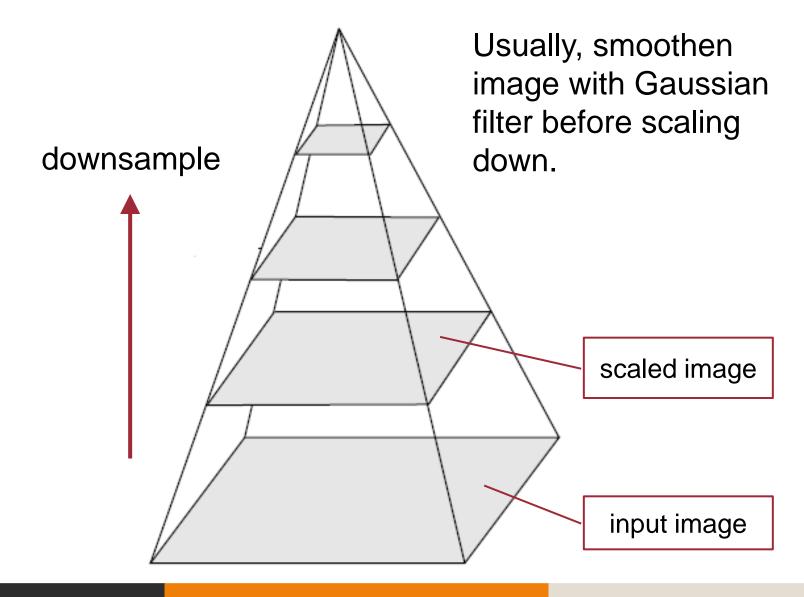
Constraints

- Math of LK tracker assumes d is small.
- In implementation, W is also small.
- LK tracker is good only for small displacement.

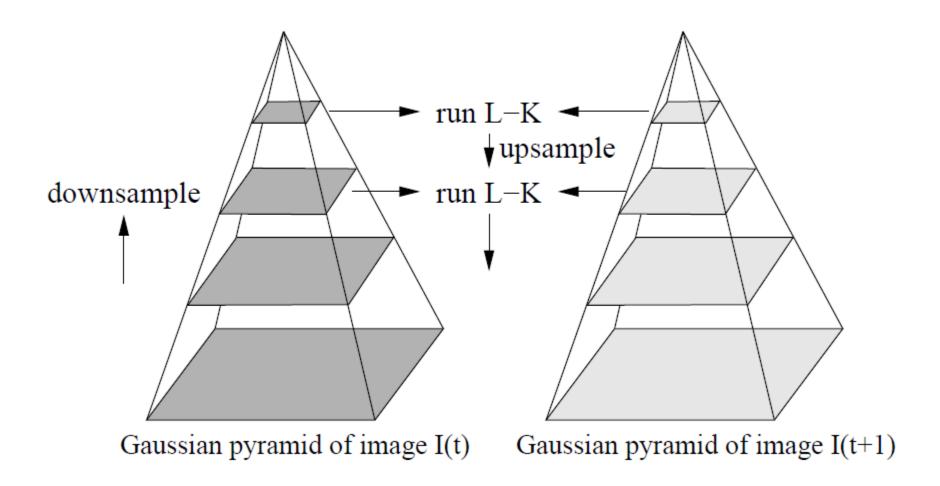
How to handle large displacement?

- What if we scale down images?
 - O Displacements are smaller!

Image Pyramid

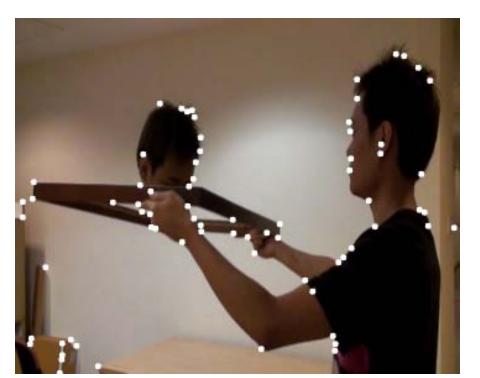


LK Tracking with Image Pyramid



- Construct image pyramids.
- Apply LK tracker to low-resolution images.
- Propagate results to higher-resolution images.
- Apply LK tracker to higher-resolution images.

Example



Tracking results are more accurate.

Summary

- Efficient algorithm, no explicit search.
- Has aperture problem; track good features only
- LK tracker can't track large displacement.
- Use LK + image pyramid for large displacement.

Software

- OpenCV supports LK and LK with pyramid.
- [Bir] offers LK with Tomasi's features & pyramid.

Appendix

- \bullet Calculation of I_x , I_y , I_t
 - Use finite difference method
 - Forward difference

$$I_x = I(x + 1, y, t) - I(x, y, t)$$

 $I_y = I(x, y + 1, t) - I(x, y, t)$
 $I_t = I(x, y, t + 1) - I(x, y, t)$

Backward difference

$$I_{x} = I(x, y, t) - I(x - 1, y, t)$$

$$I_{y} = I(x, y, t) - I(x, y - 1, t)$$

$$I_{t} = I(x, y, t) - I(x, y, t - 1)$$

Further Readings

- Lucas-Kanade tracking with pyramid: [BK08] Chapter 10.
- Optical flow: [Sze10] Section 8.4.
- Hierarchical motion estimation (with image pyramid): [Sze10] Section 8.1.1.

References

- [Bir] S. Birchfield. KLT: An implementation of the Kanade-Lucas-Tomasi feature tracker. http://vision.stanford.edu/~birch/klt/.
- [BK08] Bradski and Kaehler. Learning OpenCV: Computer Vision with the OpenCV Library. O'Reilly, 2008.
- [LK81] B. D. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In Proceedings of 7th International Joint Conference on Artificial Intelligence, pages 674– 679, 1981.
- [ST94] J. Shi and C. Tomasi. Good features to track. In *Proceedings* of IEEE Conference on Computer Vision and Pattern Recognition, pages 593–600, 1994.
- [Sze10] R. Szeliski. Computer Vision: Algorithms and Applications.
 Springer, 2010.

References

 [TK91] C. Tomasi and T. Kanade. Detection and tracking of point features. Technical Report CMU-CS-91-132, School of Computer Science, Carnegie Mellon University, 1991.