
Image Registration

CS4243 Computer Vision and Pattern Recognition

Leow Wee Kheng

Department of Computer Science

School of Computing

National University of Singapore

Leow Wee Kheng (CS4243) Image Registration 1 / 39

Outline

1 Image Registration

2 2D Linear Transformation

3 Registration Methods

4 Bilinear Interpolation

5 Image Mosaicking

6 Alpha Blending

7 Summary

8 Further Reading

9 Reference

Leow Wee Kheng (CS4243) Image Registration 2 / 39

Image Registration

Image Registration

Transform an image to align its pixels with those in another image.

Map the coordinate (x, y) of an image to a new coordinate (x′, y′).

Transformation can be linear or nonlinear.

Example: Align two images and combine them to produce a larger one.

Leow Wee Kheng (CS4243) Image Registration 3 / 39

2D Linear Transformation 2D Similarity Transformation

2D Similarity Transformation

Scaling changes the point p = (x, y) by a constant factor s:

x′ = s x

y′ = s y
(1)

In matrix form,
[

x′

y′

]

=

[

s 0

0 s

][

x

y

]

(2)

Leow Wee Kheng (CS4243) Image Registration 4 / 39

2D Linear Transformation 2D Similarity Transformation

In general, the scaling factors for x and y can be different:

[

x′

y′

]

=

[

sx 0

0 sy

][

x

y

]

(3)

sx

sy = 2

O

= 1.5

y

x

Leow Wee Kheng (CS4243) Image Registration 5 / 39

2D Linear Transformation 2D Similarity Transformation

Rotation is normally performed about the origin.

O

θ
α

p’

p

y

x

Let ρ denote the magnitude of the vector p = [x y]⊤. Then,

[

x

y

]

=

[

ρ cosα

ρ sinα

]

(4)

Leow Wee Kheng (CS4243) Image Registration 6 / 39

2D Linear Transformation 2D Similarity Transformation

After rotating about the origin by an angle θ, point p becomes
p′ = [x′ y′]⊤:

[

x′

y′

]

=

[

ρ cos(α+ θ)

ρ sin(α+ θ)

]

=

[

ρ (cosα cos θ − sinα sin θ)

ρ (sinα cos θ + cosα sin θ)

]

=

[

x cos θ − y sin θ

x sin θ + y cos θ

]

=

[

cos θ − sin θ

sin θ cos θ

][

x

y

]

(5)

Leow Wee Kheng (CS4243) Image Registration 7 / 39

2D Linear Transformation 2D Similarity Transformation

Translation of point p = [x y]⊤ by the vector T = [tx ty]
⊤ is

given by
[

x′

y′

]

=

[

x

y

]

+

[

tx

ty

]

=

[

x+ tx

y + ty

]

(6)

tx = 2

ty = 2

x
O

y

Leow Wee Kheng (CS4243) Image Registration 8 / 39

2D Linear Transformation 2D Similarity Transformation

Homogeneous coordinates of the 2D point

p =

[

x
y

]

are

cx
cy
c

for any non-zero c.

The 2D vector p becomes a 3D vector.

Given a point [x y z]⊤ in homogeneous coords,
its 2D Cartesian coords are [x/z y/z]⊤, provided z 6= 0.
If z = 0, then this is a point at infinity.

Homogeneous coordinates apply to 3D points as well, by adding a 4th
component.

Leow Wee Kheng (CS4243) Image Registration 9 / 39

2D Linear Transformation 2D Similarity Transformation

Can combine rotation, scaling, and translation into a single matrix
using homogeneous coordinates:

x′

y′

1

=

1 0 tx

0 1 ty

0 0 1

s 0 0

0 s 0

0 0 1

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

x

y

1

=

s cos θ −s sin θ tx

s sin θ s cos θ ty

0 0 1

x

y

1

(7)

Leow Wee Kheng (CS4243) Image Registration 10 / 39

2D Linear Transformation 2D Affine Transformation

2D Affine Transformation

Affine transform is a generalization of linear transformation:

x′

y′

1

=

a11 a12 a13

a21 a22 a23

0 0 1

x

y

1

(8)

for some parameters aij .

In short-hand notation:
p′ = Ap (9)

A is the affine transformation matrix.

Leow Wee Kheng (CS4243) Image Registration 11 / 39

Registration Methods

Registration Methods

Given two images, how to register one with the other?

Basic idea:
1 Determine the corresponding points between the images.

Manually mark corresponding points, or
Detect and match features between views
(see lecture on feature detection and matching).

2 Determine the transformation between corresponding points.

Assume that all pairs of corresponding points are related by the
same transformation.
Compute parameters of transformation given corresponding points.

Leow Wee Kheng (CS4243) Image Registration 12 / 39

Registration Methods

O

y

x
O

y

x

(a) same rotation (b) different rotation

In general, need to apply non-linear method.

Leow Wee Kheng (CS4243) Image Registration 13 / 39

Registration Methods

Let’s try affine transformation which is simpler to work with.

x′

y′

1

=

a11 a12 a13

a21 a22 a23

0 0 1

x

y

1

Affine transformation (Eq. 8) has 6 parameters.

Need 3 pairs of corresponding points.

Usually use more than 3 pairs to obtain best fitting affine
parameters.

Leow Wee Kheng (CS4243) Image Registration 14 / 39

Registration Methods Method 1

Method 1

Suppose we have n pairs of corresponding points pi and p′

i.

From Eq. 8,
x′i = a11 xi + a12 yi + a13

y′i = a21 xi + a22 yi + a23
(10)

for i = 1, . . . , n.

Now, we have two sets of linear equations of the form

Ma = b (11)

Leow Wee Kheng (CS4243) Image Registration 15 / 39

Registration Methods Method 1

First set:

x1 y1 1

...
...

...

xn yn 1

a11

a12

a13

=

x′1
...

x′n

(12)

Second set:

x1 y1 1

...
...

...

xn yn 1

a21

a22

a23

=

y′1
...

y′n

(13)

Number of equations > number of unknowns. No exact solution.

Can compute best fitting aij for each set independently.

Use linear least square fit to compute.

There’s a variation of this method (Lab 2).

Leow Wee Kheng (CS4243) Image Registration 16 / 39

Registration Methods Method 1

In
Ma = b, (14)

M is not square and so has no inverse.

But, M⊤M is square and has inverse (typically). So,

M⊤Ma = M⊤b

a = (M⊤M)−1M⊤b
(15)

(M⊤M)−1M⊤ is the pseudo-inverse of M.

Pseudo-inverse gives the least squared error solution.

In practice, pseudo-inverse can be very large matrix.
So, don’t use it directly.

Numerical software such as NumPy, Matlab, Numerical Recipes
provide functions for computing the linear least square solution
(Lab 2).

Leow Wee Kheng (CS4243) Image Registration 17 / 39

Registration Methods Method 2

Method 2

Put the x′ and y′ parts in the same matrix equation:

x1 y1 1 0 0 0
...

xn yn 1 0 0 0

0 0 0 x1 y1 1
...

0 0 0 xn yn 1

a21
a22
a23
a21
a22
a23

=

x′1
...
x′n

y′1
...
y′n

(16)

This system of linear equations can be easily solved in NumPy.

Actually, the x′ and y′ parts are still independent of each other.

Leow Wee Kheng (CS4243) Image Registration 18 / 39

Registration Methods Method 2

Beware!

Suppose you sum the x′ and y′ parts, you will get

x′i + y′i = a11 xi + a12 yi + a13 + a21 xi + a22 yi + a23. (17)

That is correct. But, if you form the matrix equation like this

x1 y1 1 x1 y1 1
...

xn yn 1 xn yn 1

a11
a12
a13
a21
a22
a23

=

x′1 + y′1

x′2 + y′2
...

x′n + y′n

(18)

you can’t get the correct results. Reasons:

There are only 3 independent columns in the matrix!

The matrix has a rank of 3, instead of the required 6.

Leow Wee Kheng (CS4243) Image Registration 19 / 39

Bilinear Interpolation

Bilinear interpolation

Suppose the matrix A maps p in image I to p′ in image I ′. Then,

p′ = Ap (19)

and
I ′(p′) = I(p) (20)

p

I I’p’

A

Leow Wee Kheng (CS4243) Image Registration 20 / 39

Bilinear Interpolation

dashed boxes: pixels

black dot: center of pixel, integer-valued coordinates

gray dot: off-centered, real-valued coordinates

Note:

Cannot use I(p) for I ′(p′):

In general, p′ has real-valued coordinates even when p has
integer-valued coordinates.
But, image pixel locations are integer-valued.
Rounding p′ to integer causes error in I ′(p′).

However, can use I ′(p′) for I(p):

Can estimate I ′(p′) from neighboring pixel values using
bilinear interpolation.

Leow Wee Kheng (CS4243) Image Registration 21 / 39

Bilinear Interpolation Linear Interpolation

Linear Interpolation

First, consider the 1D case: linear interpolation.

f1

f2

x2x1 d1 d 2

f

x

f − f1
x− x1

=
f2 − f

x2 − x
(21)

i.e.,
f − f1
d1

=
f2 − f

d2
(22)

Leow Wee Kheng (CS4243) Image Registration 22 / 39

Bilinear Interpolation Linear Interpolation

Rearranging terms yields

f =
d1f2 + d2f1
d1 + d2

(23)

If [x1, x2] is a unit interval, then

f = αf2 + (1− α)f1 (24)

where α = d1.

Leow Wee Kheng (CS4243) Image Registration 23 / 39

Bilinear Interpolation Bilinear Interpolation

Bilinear Interpolation

Now, consider the 2D case: bilinear interpolation.

x1

h1 h

2

2

1

y2

v1

v

y

f
2

f21

f22

f11

x

12

f

x

y

First, apply linear interpolation to obtain f(x1, y) and f(x2, y).

f(x1, y) =
v1f(x1, y2) + v2f(x1, y1)

v1 + v2

f(x2, y) =
v1f(x2, y2) + v2f(x2, y1)

v1 + v2

(25)

Leow Wee Kheng (CS4243) Image Registration 24 / 39

Bilinear Interpolation Bilinear Interpolation

Then, apply linear interpolation between f(x1, y) and f(x2, y).

f(x, y) =
h1f(x2, y) + h2f(x1, y)

h1 + h2

=
h1v1f22 + h1v2f21 + h2v1f12 + h2v2f11

(h1 + h2)(v1 + v2)

(26)

where fij = f(xi, yj).

For a unit square, with α = h1, β = v1,

f(x, y) = αβf22 + α(1− β)f21 + (1− α)βf12 + (1− α)(1− β)f11 (27)

Leow Wee Kheng (CS4243) Image Registration 25 / 39

Bilinear Interpolation Bilinear Interpolation

Example

0.8

0.7 1.0

0.3

0 1

1

0

0
0.2

0.4
0.6

0.8

0

0.2

0.4
0.6

0.8
0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

Note:
In general, can have trilinear interpolation in 3D,
multilinear interpolation in multi-D.

Leow Wee Kheng (CS4243) Image Registration 26 / 39

Image Mosaicking

Image Mosaicking

Combine small overlapping images into single large image.

Leow Wee Kheng (CS4243) Image Registration 27 / 39

Image Mosaicking

Method

Suppose that A1 and A2 are known.
They specify the transformation between the output image R and the
input images I1 and I2, respectively.

For each pixel p in R, do:

Compute: p1 = A1p and p2 = A2p.

If both p1 and p2 fall outside of I1 and I2, respectively,
then R(p) = default color, e.g., black.

If both p1 and p2 fall inside of I1 and I2, respectively,
then R(p) = blending of I1(p1) and I2(p2).

Otherwise, only one of p1 or p2 falls inside I1 or I2.
So, R(p) = I1(p1) or I2(p2), as appropriate.

Leow Wee Kheng (CS4243) Image Registration 28 / 39

Image Mosaicking

Notes:

A1 and A2 are solved using the methods introduced earlier.

Usually, R is chosen to have the same viewpoint as one of the
input images, e.g., that of I1. Then A1 is the identity matrix I.

Usually p1 and p2 do not have integer coordinates. So, use
bilinear interpolation to determine its color.

Alpha blending is usually used to blend colors coming from
different input images.

Leow Wee Kheng (CS4243) Image Registration 29 / 39

Image Mosaicking

Example: input images

Leow Wee Kheng (CS4243) Image Registration 30 / 39

Image Mosaicking

Example: mosaicked image

Leow Wee Kheng (CS4243) Image Registration 31 / 39

Alpha Blending

Alpha Blending

Usually, the images to be mosaicked together have different overall
intensity and contrast.

Leow Wee Kheng (CS4243) Image Registration 32 / 39

Alpha Blending

The mosaicked image has an apparent seam.

To remove the seam, apply alpha blending.

Leow Wee Kheng (CS4243) Image Registration 33 / 39

Alpha Blending

Basic idea

Let the color in the overlapping regions change smoothly from the
color in one image to the color in the other image.

Let C1(p) denote color of pixel p in image 1.

Let C2(p) denote color of pixel p in image 2.

Then, color C(p) of blended image is given by

C(p) = αC1(p) + (1− α)C2(p) (28)

where α is related to the distances to the overlapping boundaries,
e.g.,

α =
d1

d1 + d2
(29)

Leow Wee Kheng (CS4243) Image Registration 34 / 39

Alpha Blending

When d1 = 0, pixel is not in image 1. C(p) = C2(p).

When d2 = 0, pixel is not in image 2. C(p) = C1(p).

Otherwise, C(p) is a blend of C1(p) and C2(p).

Leow Wee Kheng (CS4243) Image Registration 35 / 39

Alpha Blending

Example

without blending with blending

Leow Wee Kheng (CS4243) Image Registration 36 / 39

Summary

Summary

Affine transformation is a simple linear transformation.

Affine transformation can change shape:
it includes scaling, rotation, translation, and shearing.

Image mosaicking transforms images into the same coordinate
frame and blend them together.

Bilinear interpolation estimates colours at real-number
coordinates.

Alpha blending blends images seamlessly.

Beside affine transformation, can also use homography
(see lecture on multiple view methods).

Leow Wee Kheng (CS4243) Image Registration 37 / 39

Further Reading

Further Reading

Affine mapping: [SS01] Section 11.3, 11.4

Examples of image mosaicking: CS4243 website: project showcase

Image stitching (mosaicking): [Sze10] Chapter 9.

Leow Wee Kheng (CS4243) Image Registration 38 / 39

Reference

Reference I

L. Shapiro and Stockman.
Computer Vision.
Prentice-Hall, 2001.

R. Szeliski.
Computer Vision: Algorithms and Applications.
Springer, 2010.

Leow Wee Kheng (CS4243) Image Registration 39 / 39

	Image Registration
	2D Linear Transformation
	
	

	Registration Methods
	
	

	Bilinear Interpolation
	
	

	Image Mosaicking
	Alpha Blending
	Summary
	Further Reading
	Reference

