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Consider this data set… 
 Fitting a line to blue points give blue line. 
 Outliers cause fitting error (red line). 
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Consider this data set… 
 Fitting a line to blue points give blue line. 
 Single outlier can cause serious error! 
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Need robust methods! 



Robust Methods 
Two basic approaches: 
 Make error functions immune to outliers. 
 Detect and discard outliers. 
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Exercise 
 Consider this set of number: 

1, 2, 3, 4, 5, 6, 7 
 What is the mean? 
 What is the median? 
 Now, insert an outlier 

1, 2, 3, 4, 5, 6, 7,14 
 What is the mean, error of mean? 
 What is the median, error of median? 
 Which one robust, mean or median? 
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Robust Statistics 
 Mean square error is not robust 
 

 

 Median square error is robust 
 
 
 Can potentially tolerate up to N / 2 outliers! 
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Robust Error Functions 
 Not adversely affected by outliers. 
 Consider least square fitting 

 
 
Want to find parameters a that minimise E. 
 Error                                  is also called residue. 
 Error function can be rewritten as 

 
 

 Square of r increases very fast with r. Not robust. 
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 Robust functions ρ(r) increase slowly with r. 
 

 Properties of ρ(r): 
Global minimum: ρ(r) = 0 when r = 0 
 Positive: ρ(r) ≥ 0 
 Symmetric: ρ(r) = ρ(−r) 
Monotonically increasing: ρ(r) ≥ ρ(s) iff r ≥ s 
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Robust Error Functions 
 Beaton and Tukey 

 
 
 
 

 Cauchy 
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Robust Error Functions 
 Huber 

 
 
 

 Forsyth 
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Robust Error Functions 
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Random Sample Consensus 
 RANSAC: Random Sample Consensus 
 Robust approach for solving many problems. 
 Try to identify outliers. 
 Basic ideas 

 RANSAC wraps over target algorithm. 
 Start with small random subset of data points. 
 Run target algorithm on subset. 
 Iteratively add consistent data points to subset. 

CS4243 Robust Methods  12 



 Target algorithm has two things 
Model M: function parameters a, etc. 
 Error measure E: need not be robust 

 
 Example: least square fit 

 
 

 Example: affine transformation 
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RANSAC 
 Given N data points. 
 Initialise best model M* ← ∅, error E(M*) ← ∞. 
 Repeat for k iterations: 

1. Randomly select subset S of m < N data points. 
2. Run target algorithm on S to determine M. 
3. For each data point x not in S 
 If error of M on x < tolerance τ, add x to S. 

4. If | S | > threshold Γ 
 Use S to determine new M. 
 If E(M) < E(M*), update M* ← M, S* ← S. 
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 RANSAC has 3 parameters 
 Error tolerance τ 
 Dependent on the expected error of fitting inliers. 

 Size threshold Γ 
 Dependent on the model. 
 Should be large enough to have enough inliers. 

 Number of iterations k 
 Should be large enough to get good model. 
 Can result in large execution time. 
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Minimum Subset Random Sampling 
 Use robust error function and random sampling. 
 Basic algorithm 
1. Initialise best model M* ← ∅, error E(M*) ← ∞. 
2. Randomly select k subsets of m data points. 
3. For each subset S of m data points 
 Determine model M that best fits data points. 
 Compute error E of applying M on all N data points. 
 If E(M) < E(M*), update M* ← M, S* ← S. 

 

 Algo complexity: O(kN) 
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How to be immune to outliers? 
 Use robust statistics 

Median (r1,…, rN) 

 Use error function with fixed value for larger r 
 Beaton and Tukey 
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 Use truncated error function 
 
 
 
 e(r) is any error function 
 ρ(r) is fixed for large r 

CS4243 Robust Methods  18 



 <

=
otherwise)(

 if)(
)ρ(

ae
arre

r



Selection of k 
 Max value of k is very large: NCM  
 In practice, smaller value of k is possible. 
 Analysis 

 ε = prob. randomly selected data point is inlier 
 ε = fraction of inliers in data set 
 εm = prob. all m data points in subset are inliers 
 s = prob. at least 1 subset has only inliers 

 
 Then, 
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s = 0.5 s = 0.95 
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small k 



Example 
 Fit ellipse to data points [RL93] 
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Summary 
 Outliers can adversely affect algorithm’s error. 
 Robust error functions are immune to outliers. 
 RANSAC 

 Robust method for finding consistent set of inliers. 

 Minimum subset random sampling 
 Use robust error function and random sampling to 

speed out random sampling. 
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Further Reading 
 Robust parameter estimation 

 [Ste99], [MMRK91] 

 RANSAC 
 [FB81], [FP03] Section 15.5, 15.6. 

 Minimal Subset Random Sampling 
 [RL93] 
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