
Robust Methods 

Leow Wee Kheng 
CS4243 Computer Vision and Pattern Recognition 

CS4243 Robust Methods  1 



Consider this data set… 
 Fitting a line to blue points give blue line. 
 Outliers cause fitting error (red line). 
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Consider this data set… 
 Fitting a line to blue points give blue line. 
 Single outlier can cause serious error! 
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Need robust methods! 



Robust Methods 
Two basic approaches: 
 Make error functions immune to outliers. 
 Detect and discard outliers. 
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Exercise 
 Consider this set of number: 

1, 2, 3, 4, 5, 6, 7 
 What is the mean? 
 What is the median? 
 Now, insert an outlier 

1, 2, 3, 4, 5, 6, 7,14 
 What is the mean, error of mean? 
 What is the median, error of median? 
 Which one robust, mean or median? 
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Robust Statistics 
 Mean square error is not robust 
 

 

 Median square error is robust 
 
 
 Can potentially tolerate up to N / 2 outliers! 

 
 

CS4243 Robust Methods  6 

( )2)(1 ∑ −=
i

ii yf
N

E x

( )2)( median iii
yfE −= x



Robust Error Functions 
 Not adversely affected by outliers. 
 Consider least square fitting 

 
 
Want to find parameters a that minimise E. 
 Error                                  is also called residue. 
 Error function can be rewritten as 

 
 

 Square of r increases very fast with r. Not robust. 
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 Robust functions ρ(r) increase slowly with r. 
 

 Properties of ρ(r): 
Global minimum: ρ(r) = 0 when r = 0 
 Positive: ρ(r) ≥ 0 
 Symmetric: ρ(r) = ρ(−r) 
Monotonically increasing: ρ(r) ≥ ρ(s) iff r ≥ s 
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Robust Error Functions 
 Beaton and Tukey 

 
 
 
 

 Cauchy 
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fixed for large r 

increases 
slowly with r 



Robust Error Functions 
 Huber 

 
 
 

 Forsyth 
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linearly with r 
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for large r 



Robust Error Functions 
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Random Sample Consensus 
 RANSAC: Random Sample Consensus 
 Robust approach for solving many problems. 
 Try to identify outliers. 
 Basic ideas 

 RANSAC wraps over target algorithm. 
 Start with small random subset of data points. 
 Run target algorithm on subset. 
 Iteratively add consistent data points to subset. 
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 Target algorithm has two things 
Model M: function parameters a, etc. 
 Error measure E: need not be robust 

 
 Example: least square fit 

 
 

 Example: affine transformation 
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RANSAC 
 Given N data points. 
 Initialise best model M* ← ∅, error E(M*) ← ∞. 
 Repeat for k iterations: 

1. Randomly select subset S of m < N data points. 
2. Run target algorithm on S to determine M. 
3. For each data point x not in S 
 If error of M on x < tolerance τ, add x to S. 

4. If | S | > threshold Γ 
 Use S to determine new M. 
 If E(M) < E(M*), update M* ← M, S* ← S. 
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 RANSAC has 3 parameters 
 Error tolerance τ 
 Dependent on the expected error of fitting inliers. 

 Size threshold Γ 
 Dependent on the model. 
 Should be large enough to have enough inliers. 

 Number of iterations k 
 Should be large enough to get good model. 
 Can result in large execution time. 
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Minimum Subset Random Sampling 
 Use robust error function and random sampling. 
 Basic algorithm 
1. Initialise best model M* ← ∅, error E(M*) ← ∞. 
2. Randomly select k subsets of m data points. 
3. For each subset S of m data points 
 Determine model M that best fits data points. 
 Compute error E of applying M on all N data points. 
 If E(M) < E(M*), update M* ← M, S* ← S. 

 

 Algo complexity: O(kN) 
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How to be immune to outliers? 
 Use robust statistics 

Median (r1,…, rN) 

 Use error function with fixed value for larger r 
 Beaton and Tukey 
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 Use truncated error function 
 
 
 
 e(r) is any error function 
 ρ(r) is fixed for large r 
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Selection of k 
 Max value of k is very large: NCM  
 In practice, smaller value of k is possible. 
 Analysis 

 ε = prob. randomly selected data point is inlier 
 ε = fraction of inliers in data set 
 εm = prob. all m data points in subset are inliers 
 s = prob. at least 1 subset has only inliers 

 
 Then, 
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s = 0.5 s = 0.95 
ε = 0.75 k1 k2 
ε = 0.5 k3 k4 

small k 



Example 
 Fit ellipse to data points [RL93] 
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Summary 
 Outliers can adversely affect algorithm’s error. 
 Robust error functions are immune to outliers. 
 RANSAC 

 Robust method for finding consistent set of inliers. 

 Minimum subset random sampling 
 Use robust error function and random sampling to 

speed out random sampling. 
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Further Reading 
 Robust parameter estimation 

 [Ste99], [MMRK91] 

 RANSAC 
 [FB81], [FP03] Section 15.5, 15.6. 

 Minimal Subset Random Sampling 
 [RL93] 
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