Subpixel Algorithms

CS4243 Computer Vision and Pattern Recognition

Leow Wee Kheng

Department of Computer Science School of Computing National University of Singapore

A B +
A B +
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

→ Ξ → < Ξ →</p>

Motivation

Motivation

- Digital images are discretized into pixels.
- Each pixel correspond to an integer-valued location.
- Integer-valued locations are not accurate enough for many applications, such as
 - tracking
 - camera calibration
 - image registration and mosaicking
 - 3D reconstruction
- To achieve better accuracy, need floating-point-valued locations, i.e., subpixel localization.

イロト イヨト イヨト

Motivation

General Idea:

- Develop a model of the feature to be localized.
- Apply conventional algorithm on input image to detect feature up to pixel accuracy.
- Iteratively match model with input image to localize detected feature with subpixel accuracy.

Notes:

- Most subpixel algorithms require a good estimate of the location of the feature.
- Otherwise, the algorithms may be attracted to the noise instead of desired features.

イロト イポト イヨト イヨト

Point Localization

Here, we illustrate the general approach using a point as an example. How does a point look in an image?

(a) A point. (b) The enlarged image of a point.

- A point usually occupies more than one pixel.
- A point does not have sharp edges. The edges are smooth or blurred.

- 4 回 6 - 4 回 6 - 4 回 6

An appropriate model of a point is 2D Gaussian.

2D (unnormalized) Gaussian

$$g(x,y) = \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

(CS4243)

5 / 22

3

イロト イポト イヨト イヨト

(1)

So, a point can be modeled by the 2D function M as follows:

$$M(x, y; A, B, \sigma, u, v) = A + B \exp\left(-\frac{(x-u)^2 + (y-v)^2}{2\sigma^2}\right)$$
(2)

- M: intensity
- (x, y): any location in the image.
- A: intensity of background (dark region).
- B: peak intensity of point (brightest region).
- (u, v): peak location, i.e., center of point.
- σ : amount of spread of the Gaussian.

・ 同下 ・ ヨト・・ ヨト

In short-hand notation: $M(\mathbf{x}, \boldsymbol{\theta})$

- $\mathbf{x} = (x, y)^T$: variable image location
- $\boldsymbol{\theta} = (A, B, \sigma, u, v)^T$: parameters of the point model.

If the model M matches a point in image I perfectly, then

$$M(\mathbf{x}, \boldsymbol{\theta}) = I(\mathbf{x}) \tag{3}$$

《曰》 《圖》 《注》 《注》 三注

for all locations \mathbf{x} within the model M.

- (u, v) gives the location of the point.
- Since *u*, *v* can be take on floating-point values, they indicate a subpixel location.

How to obtain a good match?

Compute error of match $E(\boldsymbol{\theta})$:

$$E(\boldsymbol{\theta}) = \sum_{\mathbf{x} \in W} [M(\mathbf{x}, \boldsymbol{\theta}) - I(\mathbf{x})]^2$$
(4)

where W is the extent of M (like a small window or template).

Next, apply appropriate algorithm to find the $\boldsymbol{\theta}$ that minimizes the error $E(\boldsymbol{\theta})$.

The subpixel location is the (u, v) of the optimal $\boldsymbol{\theta}$.

Method 1: Direct Solution

- Do the usual thing: $\partial E / \partial \theta = 0$.
- Then, rearrange the terms to try to obtain a set of equations that can be solved.

3

(日) (四) (日) (日)

Method 2: Apply Optimization Algorithm

Some possible algorithms:

- Gradient descent.
 - Compute $\partial E/\partial \theta$.
 - Then, change $\boldsymbol{\theta}$ iteratively until it converges:

$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) - \eta \frac{\partial E}{\partial \boldsymbol{\theta}}$$
(5)

・ロト ・ 一 ・ ・ ヨ ・ ・ ・ ・ ・ ・

where η is a constant update rate.

- Powell's direction set method.
 - Does not require user to provide gradient function $\partial E/\partial \theta$.
 - Can estimate gradient by itself.
- Conjugate gradient method.
 - Polak-Ribiere method requires user to provide gradient function.
 - In general, requires user to provide the Hessian (2nd derivatives).

Example: Use gradient descent method to localize a point.

Actual parameter values: $(A, B, u, v, \sigma) = (10, 170, 4.4, 3.7, 1.8)$ Initial estimate $\boldsymbol{\theta}(0)$: $(A, B, u, v, \sigma) = (0, 100, 5, 3, 1)$

Optimization error $E(\boldsymbol{\theta})$ over iteration t:

CS4243)

イロト 不得下 イヨト イヨト

Position error over iteration t:

- Remember to get an initial good estimate of the parameters $\theta(0)$ using other standard feature detection algorithms.
- Otherwise, optimization algorithm may be trapped in a local minimum, which may correspond to a wrong result.

(CS4243

Edge Localization

Edge localization can be performed in a similar manner.

An edge is defined by a change of intensity:

ъ

- 4 回 ト - 4 回 ト

Derivation of Edge Model

• (O, x, y) is the global coordinate system of the image.

• (O', x', y') is the local coordinate system in which the edge is defined.

(CS4243)

A unit step edge is defined as

(CS4243)

2

・ロト ・四ト ・ヨト ・ヨト

(6)

An ideal 2-D step edge S located at O' in the coordinate system (O', x', y') along the y'-axis is given by

$$S(x', y') = U(x').$$
 (7)

イロト イヨト イヨト イヨト

A 2-D blurred edge F can be modeled by convolving the 2-D step edge S with a 1-D Gaussian G across the edge:

$$F(x',y',\sigma) = \int G(w;\sigma) S(x'-w,y') \, dw \tag{8}$$

where

$$G(w;\sigma) = \exp\left(-\frac{w^2}{2\sigma^2}\right) \tag{9}$$

→ E → < E →</p>

O' is located at (u, v) of the global coordinate system.

So, transform edge from local system to global system:

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} (x-u)\cos\theta + (y-v)\sin\theta\\-(x-u)\sin\theta + (y-v)\cos\theta \end{bmatrix}$$
(10)

Let the gray level on the darker side be A and the gray level on the brighter side be B. Then, the final edge model M is:

$$M(x, y, \boldsymbol{\theta}) = A + BF(x', y', \sigma) \tag{11}$$

where $\boldsymbol{\theta} = (u, v, \theta, \sigma, A, B)^T$ is the parameter vector.

◆ロト ◆□ ▶ ◆ヨ ▶ ◆ヨ ▶ ● ヨ ● のへの

Now, can compute the error of match $E(\boldsymbol{\theta})$ as

$$E(\boldsymbol{\theta}) = \sum_{\mathbf{x} \in W} \left(M(\mathbf{x}, \boldsymbol{\theta}) - I(\mathbf{x}) \right)^2$$
(12)

where W is the extent of M.

Next, apply appropriate algorithm to find the $\boldsymbol{\theta}$ that minimizes the error $E(\boldsymbol{\theta})$.

The subpixel location is the (u, v) of the optimal $\boldsymbol{\theta}$.

The orientation of the edge is perpendicular to θ of the optimal θ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Further Reading

- Subpixel corner localization algorithm [DB93, DG90].
- Various optimization algorithms [PTVF96].

イロト イポト イヨト イヨト

Reference

Reference I

R. Deriche and T. Blaszka.

Recovering and characterizing image features using an efficient model based approach.

In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 530–535, 1993. http://citeseer.nj.nec.com/deriche94recovering.html.

 R. Deriche and G. Giraudon.
Accurate corner detection: An analytical study.
In Proceedings of 3rd International Conference on Computer Vision, pages 66–70, 1990.

・ロト ・回ト ・ヨト ・ヨト

Reference II

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes in C.
Cambridge University Press, 2nd edition, 1996.

イロト イポト イヨト イヨト