
Chess Vision

Chua Huiyan
Le Vinh

Wong Lai Kuan

Outline
Introduction
Background Studies
2D Chess Vision

Real-time Board Detection
Extraction and Undistortion of Board
Board Configuration Recognition

3D Chess Vision
Board Pre-Calibration
Extraction and Undistortion of Board
Board Configuration Recognition

Problems Encountered
Conclusion
Reference

Introduction

Main Objective:
Real time recognition of perspective distorted chess
board configuration.

Our achievement:
Real-time recognition of the configuration of a 2D chess
board that can be moved or rotated anytime.
Real-time recognition of the configuration of a 3D chess
board that is pre-calibrated.

Previous Work

To simplify the problem, previous chess vision
algorithms [1, 2] have the following constraints /
assumptions:

Camera is mounted directly on top of the board
Minimal perspective distortion.

Stationary chess board
Allow pre-calibration of chessboard.

Clean / plain background
Enable easy chessboard corner detection.

Known initial configuration
Configuration of the previous board configuration can be
used to assist in determining the next board configuration.

Challenge of our project

2D chessboard recognition
Camera / board position and orientation can be changed
in real-time.

Requires real-time tracking of chessboard corners and
calibration of chessboard.

Unknown initial configuration
Allow any initial configuration that will be determined in
real-time.

3D chessboard recognition
Camera mounted on a perspective view

Occlusion of chess pieces.

2D Chess Vision

Step 1: Real-time Board Detection

1a. Board corners detection

- Combination of line detection
and corner detection:
Hough transform to detect lines and
check for crosses with the detected
corners to filter the outliners. Then 4
intersections by the borders are
extracted.

- This method minimizes the
errors caused by noise and
outliers but it’s slower than other
methods. However, the speed is
adequate for our chess game
context.

Step 1: Real-time Board Detection

1b. Board orientation detection
- We mark the top-left corner with blue color.
- After 4 corners are found, we detect the one with blue color, then sort them

in clockwise sequence to send to next phase.

Step 2: Extraction & Undistortion of Board

Using board corners detected from Step 1, extract and transform the board to
a square board of size 480 x 480.
This requires finding the perspective distortion, T of the captured board using
the formula:

Destination scan was then used to undistort the image.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

111
'
'

3231

232221

131211

y
x

tt
ttt
ttt

y
x

Step 3: Board Configuration Recognition

Initially implemented method proposed by Farahat et al. [1].
This method is very senstive to changing light condition.

Need to use a difference operator (between two consecutive
image to compensate for lighting change) – even then it work
best under lamp light.
We improved on this method to allow it to work on different
lighting environment without using any difference operator or
previous images.

Step 3: Board Configuration Recognition
3a. 1st Pass: Filter out non-occupied chess square

After getting the undistorted chessboard, Canny edge detection is applied to
the whole undistorted image.
Divide the canny chess board image into 8 x 8 chess square images and
apply threshold to detect whether a chess square is occupied.
Square without chess piece is represented as 0 in the system

Undistorted image Image with Canny detection

Step 3: Board Configuration Recognition

3b. 2nd Pass: Determining color of chess piece in
occupied chess square

Image is first converted to HSV
Value plane is used to determine whether the chess piece is black or white
Pixels are classified into 256 bins in the histogram
Black pixels are classified to range from the zero to the tenth bin
Number of pixels found in the first 10 bins were summed up to track the number
of black pixels in each chess square
Chess piece is determined to be black (represented as 2) when the number of
black pixels found in the chess square is above a threshold, else chess piece is
white (represented as 1)

3D Chess Vision

Step 1: Real-time Board Detection
Same as 2D chess but it’s pre-calibrated.

Step 2: Extraction & Undistortion of Board
Same as 2D chess.

3D Chess Vision

Step 3: Board Configuration Recognition

Setup
Use two webcams positioned perpendicular to each other so
that pieces appear occluded in one view may be seen from
another view.
Inititial configuration of board is provided.

1st view 2nd view

Step 3: Board Configuration Recognition

Step 3a: Determine the two chess square
Divide the chess board image into 8 x 8 chess square images
For each chess square

Obtain the abs difference images of both views for two consecutive
frames.
Perform binary threshold – set difference value above 30 for each pixel
to 1, otherwise 0.
Compute the total sum square difference for both difference image.

Find the two chess squares with maximum total sum square
difference.

Step 3: Board Configuration Recognition

Step 3b: Determine the changed configuration
If the original states one of the selected chess square = 0
(unoccupied)

Swap the states of the two square
Else (both squares are occupied)

Use Laplace to find edges of the current image for both squares.
Replace the state of chess square with more edges with the previous
state of the chess square with less edges.
Set the state of the chess square with less edges to 0 (unoccupied).

Implementation & Testing

Implementation:
C++, OpenCV, OpenGL for Vision part.
Java socket programming for interface with game
engine.

Testing:
Perform stress tests to test for worst case scenario.

Perform testing under changing light condition.

Problems encountered
Some image analysis methods work well for static images but very unstable
when implemented in real-time.

Real-time corner detection
Trivial methods such as simple corner / color / corners detection is very unstable.
Solution: Use a combination of various methods to determine the corners.

Real-time integration
Sensitive to change of lightings / flickering fluorescent light / reflection.
Solution: Iteratively change our methods to be more robust to changing
environment conditions.

Crashing
Caused by two threads trying to access a same image file.
Solution: Implement a semaphore for locking the files accessed by the two
threads.

Conclusion

What we achieve?
Concrete implementation of the game Lines of Action with chess
vision and AI module (2D version).
Successfully implemented both the 2D and 3D chess
recognition.
Improved on the robustness of the lighting
Camera do not need to be mounted directly on top of the board
Chess board can be moved around in the middle of game play in
the 2D version without affecting chess recognition
2D version can take in any input configuration
Background can allow for some noise

Conclusion

What we have learnt?
Learnt to develop a computer vision system and
implement in real-time.
Learnt to deal with increased noise in real time video
due to change of light condition.
Applied theories that we have learnt in class: Canny
edge detection, corner detection, Hough transform,
homography, color spaces.

Reference

[1] A. K. Farahat, A. M. Hassan and M. A. El-Nagar, A Vision System
for Chess Playing Robots, 46th IEEE Midwest Symposium On
Circuits and Systems, December 27-30, 2003.

[2]David Urting, Yolande Berbers (2003), MarineBlue: A Low-Cost
Chess Robot, Proceedings of the IASTED International Conference
on Robotics and Applications (Hamza, M.H., ed.), pp. 76-81.

Thank you

Chua Huiyan
Le Vinh

Wong Lai Kuan

	Chess Vision
	Outline	
	Introduction
	Previous Work
	Challenge of our project
	2D Chess Vision
	Step 1: Real-time Board Detection
	Step 1: Real-time Board Detection
	Step 2: Extraction & Undistortion of Board
	Step 3: Board Configuration Recognition
	Step 3: Board Configuration Recognition
	Step 3: Board Configuration Recognition
	3D Chess Vision
	Step 1: Real-time Board Detection
	Step 3: Board Configuration Recognition
	Step 3: Board Configuration Recognition
	Step 3: Board Configuration Recognition
	Implementation & Testing
	Problems encountered
	Conclusion
	Conclusion
	Reference
	Thank you

