CS4243 Project Video Object Tracking

Team members

Manh Pham Cuong Nguyen Dinh Truong Huy Nguyen Thuy Dung

Lecturers

Leow Wee Kheng Sim Mong Cheng, Terence

Contents

- Mean shift algorithm
- Basic feature
 - No occlusion
 - No change
- Further features:
 - Track an object that changes in size.
 - Track an object that is occluded in a number of frames
- Improvements
- References

Overall idea

- Mean shift intuition
 - Slide credit: Yaron Ukrainitz & Bernard Sarel

Distribution of identical billiard balls

Color space

- HSV (Hue, Saturation, Value)
- Characteristics
 - Similar to human visual perception of color.
 - Robust with lighting changes.
 - Quantization rate
 - Hue (color): 8
 - Saturation (gray scale): 8
 - Value (color darkness): 4

Basic Level

No occlusion or size change

Basic level

Demonstration video

Basic level

• Originally non-negative weights

$$w_{i} = \sum_{u=1}^{m} \delta[b(x_{i}) - u] \sqrt{\frac{\hat{q}_{u}}{\hat{p}_{u}(\hat{y}_{0})}}$$

- Works well only when
 - The tracked object moves at low speed (background colors rarely dominate target candidate).

Basic level

• Our approach:

Mean shift with negative weights allowed.

$$w_i = \sum_{u=1}^m \delta[b(x_i) - u] \log\left(\frac{\hat{q}_u}{\hat{p}_u(\hat{y}_0)}\right)$$

• A point's weight: a vote for the direction of the meanshift offset.

Non-negative weights

Negative weights allowed $\left|\log\left(\frac{\hat{q}_u}{\hat{p}_u(\hat{y}_0)}\right)\right|$

Intermediate Level

1. Change in size

Change in size

Demonstration Video

Change in size

• Approach

- Greedily search for the best match.

Vary the radius (which represents width and height)

Intermediate Level

2. Occlusion

Occlusion

- Assumption during occlusion period
 - No huge change in direction and velocity.
 - No change in size.
- Terminology
 - Hypothetical states
 - Position
 - Velocity
 - Bhattacharya coefficient (Rho)
 - The similarity between the hypothetical state and the target model.
 - Mean state
 - Estimated target state
 - Mean of hypothetical states.

Approach

- Initialization
 - N hypothetical states.
 - Probability p_i for each state
 - The more similar, the more probable
- Choose hypothetical states St based on its probability
- Update hypothetical states

Approach (Occlusion)

- Occlusion detection
 - Rho of mean shift result is less than a certain threshold (empirically set)
 - Intuition
 - The object is nowhere to be found, i.e. occluded.

Approach (Occlusion)

- Occlusion period
 - Estimate the mean state
- Reoccurrence detection
 - Rho at the mean state is greater than a threshold.
 - Position of target is set to the mean state
 - Switch back to tracking using mean shift.

Occlusion

Demonstration Video

References

- [1] D. Comaniciu, V. Ramesh and P. Meer, Real-Time Tracking of Non-Rigid Objects using Mean Shift, Computer Vision and Pattern Recognition (2000) 142-149.
- [2] Katja Nummiaro, et al, Color Features for Tracking Non-Rigid Objects, Chinese Journal of Automation, Vol29, No3, May 2003
- [3] R. Collins, "Mean-shift blob tracking through scale space," in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Madison,WI, 2003, pp. 234–240.