## 360° Full View Spherical Mosaic



Huang Wenfan Huang Yehui Rong Nan U017865B U017844X U018274R



## **Objective**



- Full spherical mosaic 360 x 180.
- All images are taken with camera mounted on a tripod.
- Registration of Images taken with different exposure level.
- Automatic

## **Process Steps**

- Image Registration
  - Fast Fourier Transform
  - Minimization of Summed Square Error
- Image Integration
  - Gamma Adjustment of the images
  - Blending of the overlapping images
- Image Viewing
  - Generating The Whole Mapping Texture Image
  - Realizing Spherical Texture Mapping by Using OpenGL





## **Image Registration**

| Registration<br>Methods                   | Pros.                                                                              | Cons.                                                                                                                         |
|-------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Fast Fourier<br>Transform                 | • Fast.                                                                            | <ul> <li>Not accurate enough…</li> </ul>                                                                                      |
| Feature Tracking                          | <ul> <li>Not sensitive for illumination change.</li> <li>Quite accurate</li> </ul> | <ul> <li>Require presence of good features.</li> <li>Aperture Problem.</li> </ul>                                             |
| Minimization of<br>summed Square<br>Error | <ul><li>General.</li><li>Quite accurate.</li></ul>                                 | <ul> <li>Require a good initial guess to avoid local minimum.</li> <li>Require no big change in lighting condition</li> </ul> |

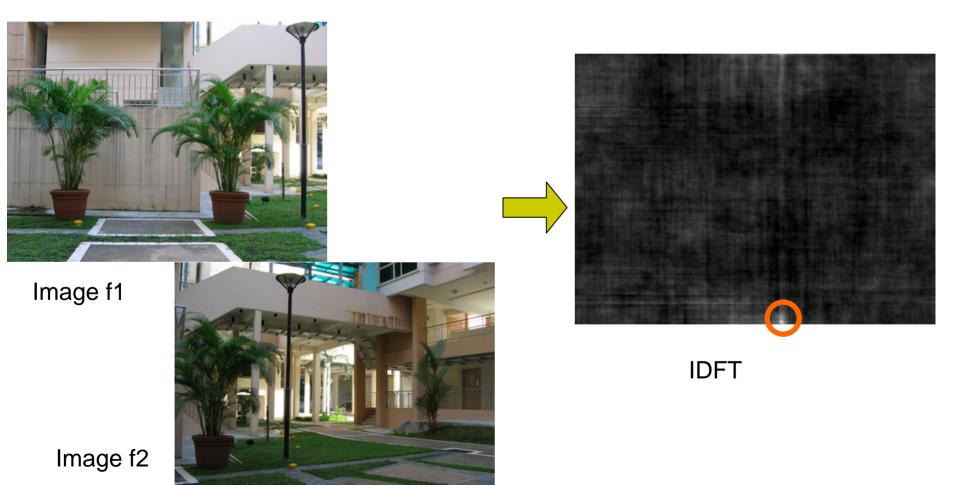
## Image Registration - Fast Fourier Transform

- Given 2 N x M Images  $f_1$ ,  $f_2$ .
- If  $f_1(x, y) = f_2(x x_0, y y_0)$ 
  - $f_1(x, y) \xrightarrow{DFT} F_1(u, v)$
  - $f_2(x, y) \xrightarrow{DFT} F_2(u, v)$
  - $F_1(u, v) = \exp[-i2 \pi (u^* x_0/N + v^* y_0/M)] F_2(u, v)$
- $[F_1(u, v) \times F_2^*(u, v)] / [[F_1(u, v) \times F_2^*(u, v)]]$ =  $exp[ -i 2 \pi (u^*x_0/N + v^*y_0/M) ]$
- The Inverse Fourier Transform of exp[ i2 π (u\*x<sub>0</sub>/N + v\*y<sub>0</sub>/M) ] is an image whose maximum intensity is located at (x<sub>0</sub>, y<sub>0</sub>) if x<sub>0</sub>, y<sub>0</sub> are both positive.



## Image Registration - Fast Fourier Transform

#### Example





 Summed squared error of overlapping area of two images

$$E = \sum_{i} [I'(x'_{i}, y'_{i}) - I(x_{i}, y_{i})]^{2} = \sum_{i} e_{i}^{2}$$

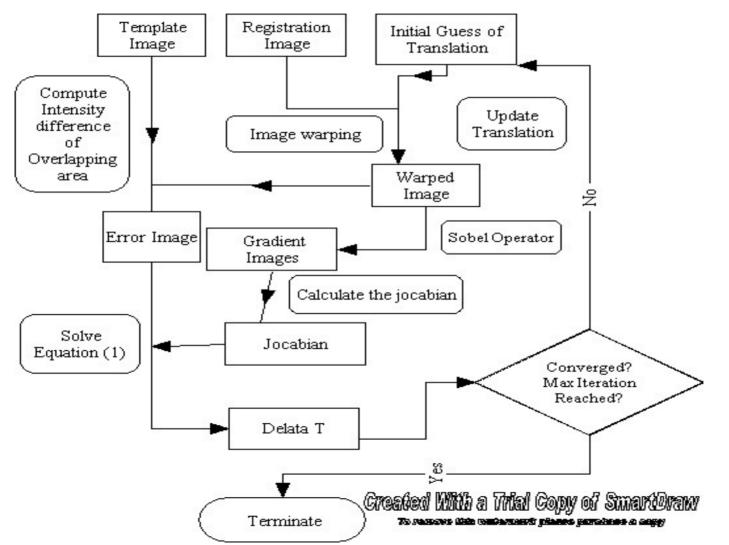
- Find a 3 x 3 Matrix M transform (x, y) to (x', y') such that the summed square error is minimized.
- The summed squared error solution is given by Levenberg-Marquardt Iterative Algorithm
  - <u>http://mathworld.wolfram.com/Levenberg-</u> <u>MarquardtMethod.html</u>



- Our first try for spherical mosaicing.
- Transform the pictures from spatial coordinates to polar coordinates on the sphere. Then the relation-ship between 2 images become pure 2D translation.
  - For each pixel in the polar picture, we find the intensity by
    - X = tan(Elevation) \* focalLength;
    - Y = focalLength \* tan(Elevation)/cos(Azimuth);
- Find 2D translation minimizing the summed square error by L & M Iterative Algorithm.



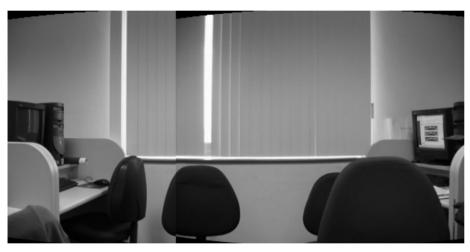
- Find the partial derivative of the error function with respect to *Tx* and *Ty* 
  - $e_i = I_r(x + Tx, y + Ty) I_t(x, y)$
  - $e_{i=}I_r(Tx, Ty) + Tx * \partial I_r/\partial x + Ty * \partial I_r/\partial y I_t(x, y)$
  - $J_i = | \partial I_r / \partial x \partial I_r / \partial y |$
- Find the solution  $\Delta T$  to update the translation.
  - $(\sum J_i^T J_i + \lambda I) * \Delta T = \sum J_i^T e_i$  (1)
  - In the actual implementation  $\lambda = 0$  already gives good result.







• This approach works fine for images on the equator.



- However, it's quite difficult to register images shot with a tilted camera with different panning angles.
- How to generate a full view spherical mosaic?

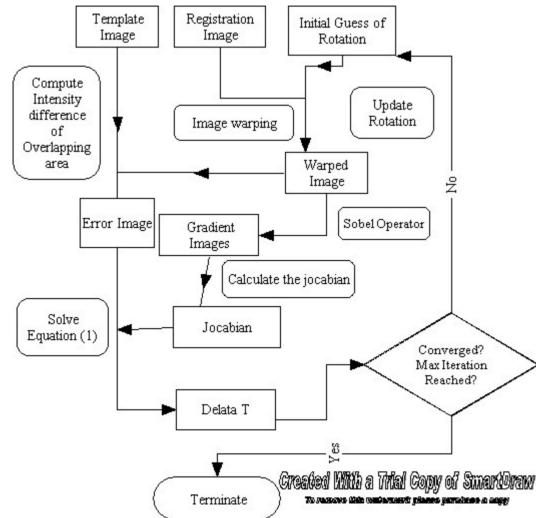


- Looking for the relative camera rotation matrix to register two images. (R. Szeliski, 1997)
- A point P in 3D space is projected to position x on the image plane of a camera rotated at the origin by:
  - **x** ~ **VRp**, where V is the perspective projection matrix. R is a rotation matrix.
  - $\mathbf{p} \sim \mathbf{R}^{-1} \mathbf{V}^{-1} \mathbf{x}$ , where p is a ray in 3D space.
- If two cameras with different rotation angles shot the same point in 3D, the projection of this point on the two images planes is related by.
  - $X_2 \sim V R_2 R_1^{-1} V^{-1} X_1$
  - $\mathbf{x}_2 \sim \mathbf{V} \mathbf{R}_2 \mathbf{V}^{-1} \mathbf{x}_1$ , if we consider camera 1 as reference frame

- Then the relative rotation matrix R is found by incremental updating using LM algorithm.
- **R** is updated by • **R**( $\Omega$ ) =  $\begin{bmatrix} 1 & -wZ & wY \\ wZ & 1 & -wX \\ -wY & wX & 1 \end{bmatrix}$ • **J**<sub>i</sub> =  $\begin{bmatrix} \partial I_r / \partial x & \partial I_r / \partial y \end{bmatrix} \times \begin{bmatrix} -xy/f & f + x^2/f & -y \\ -f - y^2/f & xy/f & x \end{bmatrix}$
- Following same algorithm presented in translation.
- We also worked out the formula for 2 rotation angles, however, the running result is not that good compared to 3 angles.











- Local Minimum Problem
  - Using Fast Fourier Transform to Provide a good initial guess.
  - Using Image pyramid.
  - We use the combination of these two methods.



- Images are only Registered with adjacent images.
- From Local Rotation Matrices to Global Rotation Matrices
  - Use only one reference frame I<sub>r</sub>

• 
$$I_{k} \sim V R_{k} V^{-1} I_{r}$$
  
•  $I_{k+1} \sim V R_{(k+1) > k} V^{-1} I_{k}$   
•  $I_{k+1} \sim V R_{(k+1) > k} R_{k} V^{-1} I_{r}$ 

- Problems and solutions
  - Accumulated error
    - Local Rotation Matrices are not error free.
    - Only the Accumulated error of global rotation matrices of images on the equator are calculated.
    - Distribute evenly to all global rotation Matrices on the equator.
  - Focal length Estimation
    - Closing the gap of images on the equator
  - Registration error due to Intensity changes of overlapping area
    - Due to different lighting condition or exposure level.
    - Using Fast Fourier Transform + Gamma Correction to adjust the intensity of two overlapping images



• Problem: Difficult to achieve accurate registration due to obvious intensity changes.











#### • Example result without gamma correction.









## Relative gamma value: 1.627



• Solution: Adjust image intensity by gamma correction before final registration.

#### • Steps:

- Use FFT to approximate translation between the 2 images. (e.g. img1(template) and img2)
- Find relative gamma value base on their average intensity in the overlapping area.
  - Gamma = log (avgI2)/log (avgI1)
- Apply gamma correction to Img2.
  - I2' = I2 ^ (1/gamma)
- Repeat until gamma within threshold. (0.99 to 1.01)

#### • Example result after gamma correction:













• Example results after gamma correction:



Before:



After:





- Which image set should we choose for final output texture?
  - Original images
  - Images being gamma corrected
- There are obvious intensity changes between original images. This may cause sudden change of brightness in the final output.
- We would like to solve this problem first before blending.



- Sudden changes in brightness in final texture if *original images* are used for final texture generation
- This is not desired.





 Some part of the final texture becomes pale if gamma corrected images are used.



- This is also not desired.



- We would like the intensity changes to be distributed averagely over the final texture while the coloring effect won't be affected too much.
- Solution: gamma distribution
- Basic idea:

For each image, find a gamma value to minimize its relative gamma value to all the neighbors. The process is repeated iteratively until a stable state is reached.



### • Steps:

- There is an absolute gamma value for each image
- For each img i:
  - Find its relative gamma values to all its neighbors. (e.g. G1, G2 ... Gn)
  - Find the geometrical mean of these values
    - $G0 = (G1^*G2^*...^*Gn)^{(1/n)}$
  - Update img I's absolute gamma value and record G0
  - Repeat until all G0 within threshold. (1.25 ~ 0.8).
- Use accumulated G0 of each image to do the final gamma correction.

- Alternative adjusting function:
  - $G0 = (Gmax * Gmin) ^{(1/2)}$
  - $G0 = (Gmax * Gmin) ^{(1/4)}$ 
    - ¼ used instead of ½ to avoid over-adjustment of gamma
  - We find G0 used produce best effect although the difference is not very significant.



Original Images used



Gamma corrected Images used

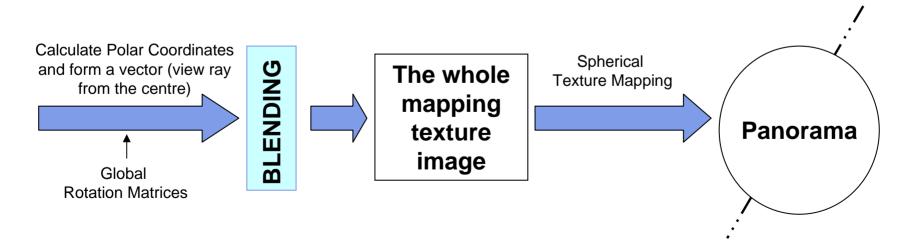


With Gamma Distribution

## **Image Viewing**



- Generating The Whole Mapping Texture Image
- Realizing Spherical Texture Mapping by Using OpenGL



## Generating The Whole Mapping Texture Image



- Step 1: For each pixel (i, j) in the output mapping image, calculate the polar coordinates (theta, phi)
  - 1. Normalize coordinates

```
x = 2 * i / width - 1
y = 2 * j / height - 1 (x,y) each ranging from -1 to 1
```

2. Derive polar coordinates

 theta = x \* pi
 theta ∈ [-pi, pi]

 phi = y \* (pi / 2)
 phi ∈ [-pi/2, pi/2]

## Generating The Whole Mapping Texture Image (Cont.)



 Step 2: Compute corresponding 3D position vector (view ray from the centre) point on unit sphere

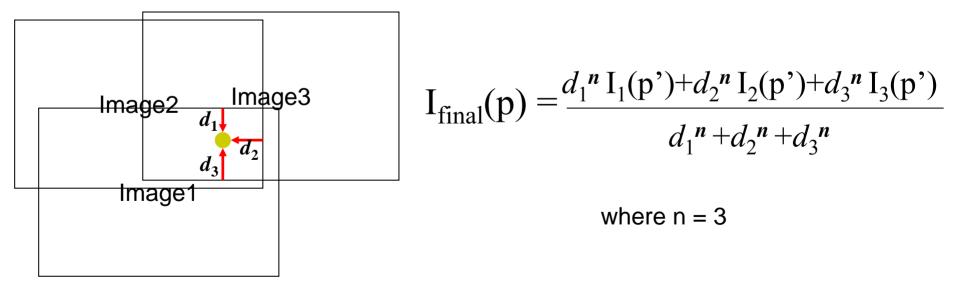
• Step 3: for each p, determine its mapping into each image k using p' =  $VR_kp$ ; Where p' is 2D point in the image,  $v = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix}$ R<sub>k</sub> is global rotation matrices

## Generating The Whole Mapping Texture Image (Cont.)

Step 4: Blending

Use simple heuristic to get good result:

 Every pixel is weighted with the distance to the closest image boundary to the n<sup>th</sup> power

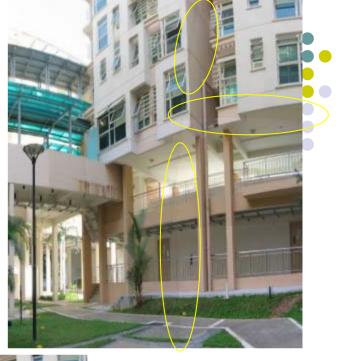


Note: If many pictures cover the same pixel, we only consider 3 of them which have higher weight.

## without blending



averaging overlapped intensity



with specific blending



## Realizing Spherical Texture Mapping by Using OpenGL

- Create one sphere
- Load the output image
- Performing texture mapping by using openGL functions.
- Design some simple user-friendly interface



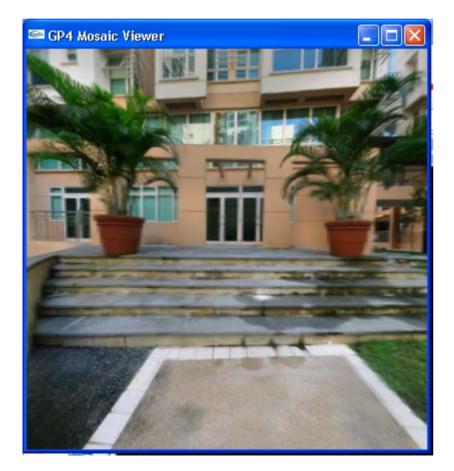


## **Result From 68 images**



## Result







## **Future improvement**

- Better Error Distribution
- Better blending funcion



### Reference



- R. Szeliski... : Creating full view panoramic Image Mosaic and Environment map.
- R. Szeliski... : Video Mosaics for virtual environment.
- M. G. Gonzalez... : Improved Video Mosaic Construction by Accumulated Alignment Error Distribution

#### • Paul Bourke:

http://astronomy.swin.edu.au/~pbourke/projection/sp heretexture/