
© Bhojan ANAND. SoC, NUS

M
O
B
I
L
E

G
A
M
E
S

Multiplayer Games

Multiplayer Games

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 2

Multiplayer Games

Same Place Separate

Real time Bluetooth Internet

Turn based Pass and play Messaging

Multiplayer Game Types

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 3

Multiplayer Games

Turn Based Games
Turn based multiplayer between players in the same
place
One mobile phone, passed back and forth between turns,
great for board games (chess, checkers, blackjack etc)
Easy to develop. (Easier than single player, where the
opponent is controlled by AI)

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 4

Multiplayer Games

Internet
Carriers (Singtel, Starhub, M1, etc) act as a service
provider to the Internet for mobile phones with data
access in their service plan
Speeds vary based on network technology (GSM, CDMA,
GPRS, UMTS, …)
Connection times and latencies can be high
Connections dropped quickly after short periods of
inactivity to free bandwidth
All mobile phones and carriers support at least HyperText
Transport Protocol
– Connectionless behavior of the HTTP protocol well suited for

the unreliability of the network
– Standard web application programming techniques can be

used to implement the server
Newer handsets can maintain direct socket
connections (TCP), with security permission

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 5

Multiplayer Games

Internet
Low latency, real time multiplayer still not practical on a
mass market scale
Internet servers required for games with more than two
players, like poker
Internet servers maintain community high scores,
downloadable content

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 6

Multiplayer Games

Networking using Generic Connection Framework
All the classes including the common Connector class
defined in the CLDC specification for networking APIs
forms the Generic Connection Framework (GCF).
The common Connector class of the GCF can be used to
create any type of connection.
The type of connection is determined by the protocol
string in the URI parameter passed to the open() method
of the Connector class.

Package: javax.microedition.io

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 7

Multiplayer Games

http://www.anuflora.com for HTTP connection.

socket://localhost:8000 for connecting to a Socket.

serversocket://:8001 for connecting to a Server Socket.

btspp://008003DD8901:1;
authenticate=true

for Bluetooth serial port protocol client
connection.

…….. -…….

Generic Connection Framework (GCF)

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 8

Multiplayer Games

The Generic Connection Framework (GCF) defines
One Generic class : Connector
One Exception : ConnectionNotFoundException
Eight Interfaces :

–Connection, ContentConnection, Datagram,
DatagramConnection, InputConnection,
OutputConnection, StreamConnection,
StreamConnectionNotifier

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 9

Multiplayer Games

The Connector class
The Connector class is a ‘factory’ for creating new Connection
objects. The static methods of Connector class return an
instance of the Connection interface or one of its descendents.
Methods

– open(String name)
– open(String name, int mode)
– open(String name, int mode, Boolean timeouts)

Eg.
Connector.open(“socket://127.0.0.1:8080”);

Modes
– READ - read only
– WRITE - write only
– READ_WRITE - read and write

Parameter ‘timeouts’: Indicates whether or not the connection
should throw an InterruptedIOException is a timeout occurs.

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 10

Multiplayer Games

The Connector class (other methods)

openInputStream(String name)
openOutputStream(String name)
openDataInputStream(String name)
openDataOutputStream(String name)

– ‘name’ - URI parameter. The type of connection is
determined by the protocol string in the URI parameter.

Eg.
OutputStream os =

Connector.openOutputStream(“socket://127.0.0.1:8080”);

Note: The connections must be executed in a
separate Thread.

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 11

Multiplayer Games

GCF Interfaces

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 12

Multiplayer Games

GCF Interfaces
The InputConnection [input stream only]
The OutputConnection [output stream only]
The StreamConnection [input and output stream]
Server socket: StreamConnectionNotifier
The ContentConnection [input and output stream with
content type, content length, content encoding]
The HttpConnection [input and output stream with most
of the http specific methods, Defined in MIDP 1.0]

Note: No TCP Socket, UDP Datagram support in MIDP 1.0

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 13

Multiplayer Games

InputConnection interface
The InputConnection interface represents a connection’s
stream data as an InputStream, that is, a stream of byte-
oriented data.
The InputConection methods:

These methods return either an InputStream object or
DataInputStream object.
Tables 6.4 and 6.5 describe the methods of InputStream
and DataInputStream objects to read data.

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 14

Multiplayer Games

InputConnection
class readWeb implements Runnable { //Runnable class

public void run() {

InputConnection inc = null; InputStream is = null;

StringBuffer b=new StringBuffer();

try {

inc = (InputConnection)

Connector.open("http://books.anuflora.com");

is = inc.openInputStream();

int ch;

while((ch = is.read())!= -1){

b.append((char)ch);

}

strItm.setText(new String(b));

}catch(IOException e){

} finally {

if (is!=null) try { is.close();} catch (Exception e) {}

if (stc!=null) try { stc.close();} catch (Exception e) {}

}

}

}

readWeb r = new readWeb(); //Running in new Thread
new Thread(r).start();

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 15

Multiplayer Games

OutputConnection Interface
The OutputConnection interface is another subinterface of
Connection. The OutputConnection interface represents a
connection’s stream data as an OutputStream.
OutputConection methods:

Tables 6.7 and 6.8 describe the methods of
OutputStream and DataOutputStream objects to write
data. (attached)

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 16

Multiplayer Games

StreamConnection
StringBuffer b=new StringBuffer();
try {
stc = (StreamConnection)

Connector.open("http://www.anuflora.com/index.html");
is = stc.openInputStream();
int ch;
while((ch = is.read())!= -1){

b.append((char)ch);
} …..

Can both READ and WRITE.

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 17

Multiplayer Games

StreamConnectionNotifier
Represents the server socket.
The StreamConnectionNotifier defines only one method,
which returns a StreamConnection interface representing
the client.
acceptAndOpen()

- Returns a StreamConnection that represents a
server side socket connection.

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 18

Multiplayer Games

Content Connection Interface
ContentConnection knows how to extract encoding,
length and content type of the data received.
try {

cc = (ContentConnection)
Connector.open("http://localhost/anuflora/index.htm");

stream = cc.openDataInputStream();
byte[] buffer = new byte[1000];
stream.readFully(buffer);
strItm.setText("Length: " + cc.getLength() +

" Encoding: " + cc.getEncoding() + " Type: " +
cc.getType());

}catch(IOException e){ ……..

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 19

Multiplayer Games

HttpConnection interface
The HttpConnection interface adds a more complete set
of HTTP handling methods including the ability to extract
the host name, url, query string, port, get and set
request methods (GET, HEAD, POST), response content
and return codes. [MIDP 1.0 – SOAP method is not
supported]
Implementations should support HTTP 1.1

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 20

Multiplayer Games

HttpConnection States HttpInterface methods
and Error codes.
Table 6.10 to 6.14
(Attached)

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 21

Multiplayer Games

HttpConnection
c = (HttpConnection)Connector.open(url);
c.setRequestMethod(HttpConnection.POST);
c.setRequestProperty("User-Agent", "Profile/MIDP-2.0

Configuration
/CLDC-1.0");

c.setRequestProperty("Content-Language", "en-US");
os = c.openOutputStream();
os.write("LIST games\n".getBytes());

rc = c.getResponseCode();
if (rc != HttpConnection.HTTP_OK) {

throw new IOException("HTTP response code: " + rc); }
is = c.openInputStream(); // Get the ContentType
String type = c.getType();
int len = (int)c.getLength();
if (len > 0) {

int actual = 0; int bytesread = 0 ;
byte[] data = new byte[len];

while ((bytesread != len) && (actual != -1)) {
actual = is.read(data, bytesread, len - bytesread);
bytesread += actual; } ………..

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 22

Multiplayer Games

MIDP 2.0 Extensions to GCF
CommConnection

– This interface defines a logical serial port connection.
HttpsConnection

– This interface defines the necessary methods and constants to
establish a secure network

SecureConnection
– This interface defines the secure socket stream connection.

SecurityInfo
– This interface defines methods to access information about a

secure network connection.
ServerSocketConnection

– This interface defines the server socket stream connection.
SocketConnection

– This interface defines the socket stream connection.
UDPDatagramConnection

– This interface defines a datagram connection which knows it's local
end point address.

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 23

Multiplayer Games

ServerSocketConnection (Echo Server)

public void run() {
try {

mServerSocketConnection = (ServerSocketConnection)
Connector.open("socket://:80");

SocketConnection sc = null;
sc = (SocketConnection)

mServerSocketConnection.acceptAndOpen();
Reader in = new InputStreamReader(

sc.openInputStream());
PrintStream out = new PrintStream(sc.openOutputStream());
out.print("HTTP/1.1 200 OK\r\n\r\n");
String line;
while ((line = readLine(in)) != null) { //Echo line by line

out.print(line); }
out.close();
in.close();
sc.close();

} catch (Exception ex) {…….

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 24

Multiplayer Games

Secure Networking
An HttpsConnection is returned from Connector.open()
when an “https://” connection string is accessed. A
SecureConnection is returned from Connector.open()
when an “ssl://” connection string is accessed. [Both
provides secured networking connections (with/without
Http).]
– javax.microedition.io.HttpsConnection
– javax.microedition.io.SecureConnection
– javax.microedition.io.SecurityInfo
– javax.microedition.pki.Certificate
– javax.microedition.pki.CertificateException

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 25

Multiplayer Games

Low level network API
A SocketConnection is returned from Connector.open()
when a “socket://host:port” connection string is
accessed. A ServerSocketConnection is returned from
Connector.open() when a “socket://:port” connection
string is accessed. A UDPDatagramConnection is returned
from Connector.open() when a “datagram://host:port”
connection string is accessed.
– javax.microedition.io.SocketConnection
– javax.microedition.io.ServerSocketConnection
– javax.microedition.io.DatagramConnection
– javax.microedition.io.Datagram
– javax.microedition.io.UDPDatagramConnection

Question to ponder: What is push registry
(javax.microedition.io.PushRegistry)? Is it useful for Games.

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 26

Multiplayer Games

Multiplayer Games
Design Issue
– Network Architecture
– Effects of Latency in real-time networking games

Design Requirements
– scalability, consistency, good responsiveness, security,

cheat prevention, ability to maintain player’s interest

Design Techniques
– Dead Reckoning – static state based on PDU (protocol data

unit), extrapolate using velocity, extrapolate using velocity
and acceleration, extrapolate based on orientation (roll,
pitch and heading), extrapolate the moving parts of the
entities.

– Partitioning
– Interest Filtering

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 27

Multiplayer Games

Messaging
Text messages can be used as a carrier of small amounts
of data between phones
Applications do not need to be running in order to receive
specially coded text messages, they will be launched
when the message is viewed by the user
Allows direct mobile-to-mobile turn based multiplayer
without a server, but 1-to-1 only!
Access to the phone contact/address book key to make it
easy to initiate communication

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 28

Multiplayer Games

Wireless Messaging API (WMA)
Wireless Messaging API (WMA) is the first optional
package defined for J2ME, which the applications can use
to send and receive short text or binary messages over
wireless connections.
WMA is based on the Generic Connection Framework
(GCF) defined for the Connected Limited Device
Configuration.
WMA defines a set of interfaces in the
javax.wireless.messaging package for sending and
receiving short messages through the wireless network
such as Global System for Mobile Communication (GSM),
Code-Division Multiple Access (CDMA), General Packet
Radio Services (GPRS), etc.

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 29

Multiplayer Games

Creating a Connection
Connector class factory of Generic Connection Framework
(GCF) is used to create a MessageConnection interface for
sending and receiving messages.
Eg.
– To Create a connection

conn = (MessageConnection)
Connector.open(uri);

– To Close the connection

Conn.close();
The uri passed to the Connector.open method is used to
identify the protocol (sms or cbs in WMA 1.1 and mms in
WMA 2.0).

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 30

Multiplayer Games

URI for SMS and CBS
URI for SMS and CBS has three parts:
– Protocol (sms or cbs)
– Phone number (for receiving messages : optional)
– Port number (for sending messages : optional, if not

specified the default text messaging port will be used)

Examples:
– sms://+6596709800
– sms://+6596709800:5670
– sms://5670
– Cbs://5070

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 31

Multiplayer Games

Sending a Message
STEPS
– Create a MessageConnection interface.
– Use the MessageConnection’s newMessage() method to

create a message object.
– newMessage() method will takes a parameter which

indicates the message type (TEXT_MESSAGE or
BINARY_MESSAGE)

– Use the Message object’s
– setPayloadText(text) - to set message text if

TEXT_MESSAGE
– setPayloadData(data) - to set data if BINARY_MESSAGE

– Use the MessageConnection’s send() method to send the
Message. send() method takes a message object as a
parameter.

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 32

Multiplayer Games

Example : Sending Text Message

public void sendText(MessageConnection conn, String text)
throws IOException, InterruptedIOException {

TextMessage txtMsg =
conn.newMessage(conn.TEXT_MESSAGE);

txtMsg.setPayloadText(text);
conn.send(txtMsg);
}

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 33

Multiplayer Games

Example : Sending Binary Data

public void sendBinary(MessageConnection conn, byte[] data)
throws IOException, InterruptedIOException {

BinaryMessage txtMsg =
conn.newMessage(conn.BINARY_MESSAGE);

txtMsg.setPayloadData(data);
conn.send(txtMsg);
}

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 34

Multiplayer Games

Receiving a Message
To receive a message, open a server connection and then call the
connection’s receive() method to receive the next available
message on the specified port.
If no message is available,

– the method blocks until a new message arrives,
– or until a different thread closes the connection.

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 35

Multiplayer Games

Example : Receiving a Message

MessageConnection conn = null;
String loc = “sms://5070”;

try {
conn = (MessageConnection) Connector.open(loc);
while (true) {

Message msg = conn.receive();
if (msg instanceof TextMessage) {
String text = ((TextMessage) msg).getPayLoadText();
// Display the text or do some actions
}

}

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 36

Multiplayer Games

Testing the Messaging Application
SMS applications are best experienced with the Over-
The-Air (OTA) provisioning mode of the J2ME
Wireless Toolkit.
Open the SMS application in the J2ME wireless Toolkit.
Build and package it (create the JAD/JAR files).
Choose Project menu and select Run via OTA

WMA 2.0
Adds support for MMS.

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 37

Multiplayer Games

Bluetooth
Bluetooth devices can broadcast their identity to be
discovered by others
Bluetooth is commonly used to emulate a direct serial
cable connection
De facto standard for low-cost and low-power short-range
radio links between mobile devices, PCs, headsets, GPS
receivers, peripherals and consumer electronics
Bluetooth Special Interest Group (SIG) releases
specifications.
IEEE 802.15 WPAN
2.4 Ghz ISM band, 1 Mbps (within piconet - gross)
Ver1: 10 meters, Ver2: 100 meters

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 38

Multiplayer Games

Bluetooth
Logically Bluetooth belongs to, connection-free token-based
multi-access network
1 Master and up to 7 Slave
Shared channel. Master decides which slave has access to the
channel.
“Piconet” - Slaves are synchronised to the same master.
“Scatternet” – Independent piconets that have overlapping
coverage. Time-multiplex mode to communicate with multiple
piconets. (Synchronization parameters need to be changed)
Comparision with Wi-Fi

– The cost of Bluetooth chips is under $3
– Bluetooth technology costs a third of Wi-Fi to implement
– Bluetooth technology uses a fifth of the power of Wi-Fi

Compare with other wireless standards
– http://bluetooth.com/Bluetooth/Learn/Technology/Compare/

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 39

Multiplayer Games

Bluetooth
Non-game entertainment possibilities: eg. viral social
networking applications
Other Applications: Automation industry, security
industry, logistics, construction (more applications when
combined with RFID (eg. IDBlue)www.baracoda.com)
Mobile phone viruses now possible
“Bluejacking”
– Sending unexpected messages or files

“Bluesnarfing”
– Stealing data from Bluetooth devices

Bluetooth-enabled kiosks may make retail software
distribution a reality

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 40

Multiplayer Games

Bluetooth Radio

Baseband and link control

LMP

L2CAP

SDP

BNEP

IP

TCP/UDP

OBEX

RFCOMM

TCS Binary

Audio

Common
Bluetooth
protocols

Host Controller Interface (HCI)

Frimware/Hardware

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 41

Multiplayer Games

Java API for Bluetooth wireless technology (JABWT)
Packages

– javax.bluetooth
– javax.obex

Image Source: Bluetooth Application Programming with the Java APIs (book) mkp.com

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 42

Multiplayer Games

Bluetooth
Application
Activities

Image Source:
http://developers.sun.com/, by C.
Enrique Ortiz,

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 43

Multiplayer Games

SDDB Service Records

AttributeID Attrib.Value

0x0000 0x1101

0x0001

Service Discovery Database (SDDB)
Database of registered services

Attribute List: https://www.bluetooth.org/foundry/assignnumb/document/service_discovery

Eg.
ProtocolDescriptorList attribute
ServiceClassIDList attribute
ServiceName attribute

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 44

Multiplayer Games

Attribute Name Attribute
ID Attribute Value Type

ServiceRecordHandle 0x0000 32-bit unsigned integer
ServiceClassIDList 0x0001 DATSEQ of UUIDs
ServiceRecordState 0x0002 32-bit unsigned integer
ServiceID 0x0003 UUID

ProtocolDescriptorList 0x0004 DATSEQ of DATSEQ of UUID and
optional parameters

BrowseGroupList 0x0005 DATSEQ of UUIDs
LanguageBasedAttribut
eIDList 0x0006 DATSEQ of DATSEQ triples

ServiceInfoTimeToLive 0x0007 32-bit unsigned integer
ServiceAvailability 0x0008 8-bit unsigned integer

Frequently used service record attributes

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 45

Multiplayer Games

Frequently used service record attributes

http://www.bluetooth.com/dev/specifications.asp) for full list.

Attribute Name Attribute ID Offset Attribute Value Type
BluetoothProfileDescriptor
List 0x0009 DATSEQ of DATSEQ pairs

DocumentationURL 0x000A URL

ClientExecutableURL 0x000B URL

IconURL 0x000C URL

VersionNumberList 0x0200 DATSEQ of 16-bit unsigned integers

ServiceDatabaseState 0x0201 32-bit unsigned integer

ServiceName 0x0000 String

ServiceDescription 0x0001 String

ProviderName 0x0002 String

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 46

Multiplayer Games

UUIDs for common Bluetooth protocols

Mnemonic UUID
size

Short
UUID

Name

SDP uuid16 0x0001 bt-sdp

UDP uuid16 0x0002

RFCOMM uuid16 0x0003 bt-fcomm

TCP uuid16 0x0004

OBEX uuid16 0x0008 obex

IP uuid16 0x0009

FTP uuid16 0x000A ftp

HTTP uuid16 0x000C http

L2CAP uuid16 0x0100 bt-l2cap

BASE_UUID: 00000000-0000-1000-8000-00805F9B34FB (16 bytes, 128 bit)

The Base UUID is
used for calculating
128-bit UUIDs from
'short UUIDs'
(uuid16 and uuid32)

Base UUID *296 + Shout UUID

Uuid32 = uuid16 + 32 bit zeros

Need to promote small size to
big size before comparing 2

uuids.

Full List:
https://www.bluetooth.org/foundry/a
ssignnumb/document/service_discov
ery

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 47

Multiplayer Games

UUIDs for common Bluetooth
profiles

Mnemonic UUID size UUID

SerialPort uuid16 0x1101
LANAccessUsingPPP uuid16 0x1102
DialupNetworking uuid16 0x1103
OBEXObjectPush uuid16 0x1105
OBEXFileTransfer uuid16 0x1106
Headset uuid16 0x1108
CordlessTelephony uuid16 0x1109
AudioSource uuid16 0x110

A
AudioSink uuid16 0x110B
A/V_RemoteControlTar
get

uuid16 0x110C

A/V_RemoteControl uuid16 0x110E
Intercom uuid16 0x1110
Fax uuid16 0x1111
WAP uuid16 0x1113
WAP_CLIENT uuid16 0x1114

Mnemonic UUID
size

UUID

DirectPrinting uuid16 0x1118
Imaging uuid16 0x111A
Handsfree uuid16 0x111E

HandsfreeAudioGate
way

uuid16 0x111F

DirectPrintingReferen
ceObjectsService

uuid16 0x1120

SIM_Access uuid16 0x112D
Phonebook Access uuid16 0x1130

Full List:
https://www.bluetooth.org/foundry/a
ssignnumb/document/service_discov
ery

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 48

Multiplayer Games

Connection String
Client

StreamConnection con = (StreamConnection)
Connector.open("btspp://0050C000321B:5");
L2CAPConnection con = (L2CAPConnection)
Connector.open("btl2cap://0050C000321B:1000");

Server
StreamConnectionNotifier cn =
(StreamConnectionNotifier)
Connector.open("btspp://localhost:" +
MY_SERVICE_NUMBER);
L2CAPConnectionNotifier cn=
(L2CAPConnectionNotifier)Connector.open("btl2cap://loca
lhost:" + MY_SERVICE_NUMBER);

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 49

Multiplayer Games

Optional Parameters in URI

scheme://host:port;parameters - clients
scheme://localhost:UUID;parameters - server

String URL = “btl2cap://localhost:UUID_STRING
;name=L2CAPService;authenticate=true; authorize=true;
master=true”;

– Master/slave – for piconet and scatternets. Note in
scatternet: one device in each piconet should play dual
role (both master and slave)

Exception

BluetoothConnectionException

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 50

Multiplayer Games

RFCOMM (serial Port) and L2CAP connections

Bluetooth
Connection

URL
Scheme

Client Connection Server Connection

Serial Port
Profile
(RFCOMM)

btspp StreamConnection StreamConnectionNotifier
StreamConnection

L2CAP btl2cap L2CAPConnection L2CAPConnectionNotifier
L2CAPConnection

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 51

Multiplayer Games

BLUETOOTH C/S Application – using Serial Port Profile
Device Discovery – (client)

device = LocalDevice.getLocalDevice(); // obtain reference to
singleton

device.setDiscoverable(DiscoveryAgent.GIAC); // set Discover
mode to GIAC

agent = device.getDiscoveryAgent(); // obtain reference to
singleton

agent.startInquiry(DiscoveryAgent.GIAC, new Listener());

Other Modes:
– DiscoveryAgent.GIAC
– DiscoveryAgent.LIAC
– DiscoveryAgent.NOT_DISCOVERABLE

– GIAC – General Inquiry Access Code (general discoverable)
– LIAC – Limited Inquiry Access Code (limited discoverable)

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 52

Multiplayer Games

Device Discovery – (client) – Call back events (DiscoveryListener)
list of RemoteDevice discovered
public static Vector devices = new Vector();
public void deviceDiscovered(RemoteDevice remoteDevice, DeviceClass

deviceClass)
{

devices.addElement(remoteDevice);
}

public void inquiryCompleted(int complete)
{

if (devices.size() == 0)
{
Alert alert = new Alert("Problem!", "No Bluetooth device

found", null, AlertType.INFO);
alert.setTimeout(3000);
display.setCurrent(alert, deviceDiscoveryScreen);

} else {
// update the GUI list to reflect all the found devices
deviceDiscoveryScreen.showList();
display.setCurrent(devicediscoveryScreen);

}
}

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 53

Multiplayer Games

Service Discovery – (client)
public void doDiscoverService(RemoteDevice remote)

int[] attr = new int[]{0x0000, 0x0001, 0x0002, 0x0003, 0x0004,
0x0005, 0x0006, 0x0007, 0x0008, 0x0009, 0x000A, 0x000B,

0x000C, 0x000D, 0x0100, 0x0101, 0x0102, 0x0200, 0x0201,
0x0301, 0x0302, 0x0303, 0x0304, 0x0305, 0x0306, 0x0307, 0x0308,
0x0309, 0x030A, 0x030B, 0x030C, 0x030D, 0x030E, 0x0310, 0x0311,
0x0312, 0x0313 };

try {
agent.searchServices(attr, // null = just retrieve the default attributes,

attr = all L2CAP services
new UUID[]{ new UUID(0x1101) }, // 0x1100 - SerialPort Profile
remoteDevice,
new Listener()); // direct discovery response to Listener object

}
catch (BluetoothStateException e) { …….

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 54

Multiplayer Games

Service Discovery – (client) – Call back events (DiscoveryListener)
public static Vector services = new Vector();
public void servicesDiscovered(int transId, ServiceRecord[] records)

{
for (int i=0; i< records.length; i ++) {

ServiceRecord record = records[i];
services.addElement(record); }

}
}

public void serviceSearchCompleted(int transId, int complete)
{
if (services.size() > 0)
{
// found at least one SPP service. We can send a message. If morethan one SPP

service is found, we send to the first one. (use sppConnection).
sendData(“Hello There”); //sendData -> MAKE CONNECTION and SEND
} else
{
// no service record found for SerialPort
Alert alert = new Alert("Problem!", “no spp", null, AlertType.ERROR);
alert.setTimeout(Alert.FOREVER);

display.setCurrent(devicediscoveryScreen); }
} ……..

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 55

Multiplayer Games

Send Data over Bluetooth – (client)
public void sendData(String msg)

{

ServiceRecord r = (ServiceRecord) services.elementAt(0); //to first spp service

// obtain the URL reference to this service on remote device

String url = r.getConnectionURL(ServiceRecord.NOAUTHENTICATE_NOENCRYPT,
false);

try

{

// obtain connection and stream to this service

StreamConnection con = (StreamConnection) Connector.open(url);

DataOutputStream out = con.openDataOutputStream();

// write data into serial stream

out.writeUTF(msg);

out.flush();

………….

Note: Each connection must be in a New Thread.

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 56

Multiplayer Games

Bluetooth ServerConnection – (server)– Register Service
device = LocalDevice.getLocalDevice(); // obtain reference to singleton
device.setDiscoverable(DiscoveryAgent.GIAC); // set Discover mode to L
String appName = "SSPServer";
// unique UUID for this service. this can be defined by developers
UUID uuid = new UUID(0xABCD);
StreamConnectionNotifier server = null;
StreamConnection c = null;
try
{
server = (StreamConnectionNotifier)Connector.open(

"btspp://localhost:" + uuid.toString() +";name="+appName);

// Retrieve the service record template (empty)
ServiceRecord rec = device.getRecord(server);

//set/update optional attributes that are to be added to the service record.
// populate BluetoothProfileDescriptionList (0x0009) using SerialPort version 1
DataElement e1 = new DataElement(DataElement.DATSEQ);
e1.addElement(new DataElement(DataElement.UUID, new UUID(0x1101))); //

add SerialPort
e1.addElement(new DataElement(DataElement.INT_8, 1)); // add Version 1
rec.setAttributeValue(0x0009, e2); // add BluetoothProfileDescriptionList

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 57

Multiplayer Games

Bluetooth ServerConnection – (server)– Listen and Read
c = server.acceptAndOpen(); //wait for incoming

connection & create service record
// obtain an input stream to the remote service
DataInputStream in = c.openDataInputStream();

// read in a string from the string
String s = in.readUTF();

// display this string on GUI
append(s, null);

// close current connection
c.close();

Further Reading: benhui.net, forum.nokia.com, developers.sonyericsson.com

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 58

Multiplayer Games

Bluetooth C/S using L2CAP (Client)
int index = 0;
L2CAPConnection con = null; transmitBuffer[] temp = null; byte[] data = ...;
try {
con = (L2CAPConnection)Connector.open(url);
int MTUSize = con.getTransmitMTU(); //Maximum Transmission Unit
// Allocation a buffer of that (MTU) size
transmitBuffer = new byte[MaxOutBufSize];
:………
while (index < data.length) {
// Send the data... move MTUSize bytes from data
// buffer to transmit buffer
if ((data.length - index) < MTUSize) {

System.arraycopy(data, index, transmitBuffer, 0, data.length - index);
} else {

System.arraycopy(data, index, transmitBuffer, 0, MTUSize);
}
con.send(transmitBuffer);
index += MTUSize;
// Reset the transmit buffer
for (int=0; i<MTUSize; i++) transmitBuffer[i] = 0;
}
con.close();
} catch (Exception e) {... Handle Exception }

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 59

Multiplayer Games

Bluetooth C/S using L2CAP (Server)

L2CAPConnectionNotifier server = null; byte[] data = null;
int length;
:….
try {
LocalDevice local = LocalDevice.getLocalDevice();
local.setDiscoverable(DiscoveryAgent.GIAC);
server = (L2CAPConnectionNotifier)
Connector.open("btl2cap://localhost:1020304050d0708093a1b121d1e1f100

");
while (!done) {

L2CAPConnection conn = null;
conn = server.acceptAndOpen();
length = conn.getReceiveMTU();
data = new byte[length];
length = conn.receive(data);
:…

}
} catch (Exception e) {
... Handle Exception

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 60

Multiplayer Games

RFCOMM vs L2CAP
L2CAP

The protocol overhead for L2CAP is 4 bytes.
L2CAP is recommended if you have a small amount of
data and you need fast response times.

RFCOMM
RFCOMM is a Bluetooth protocol based on L2CAP.
The protocol overhead for RFCOMM is between 4 and 5
bytes for small packets. For every 127 bytes of data, the
header increases in size by 1 byte.
The overall protocol overhead is about 8 to 9 bytes for
data less than 127 bytes (4 bytes from L2CAP and 4 to 5
bytes from RFCOMM).

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 61

Multiplayer Games

Device classes (DeviceClass class)

DeviceClass represents a class of device (CoD) as
specified in the Bluetooth specification.
Devices classes are identified using a major, minor and
service class.

int getMajorDeviceClass() – retrieves the major device class.
int getMinorDeviceClass() – retrieves the minor device class.
int getServiceClasses() – retrieves the major service classes

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 62

Multiplayer Games

Device classes (DeviceClass class)

static final NLDMSC = 0x22000; // Networking, Limited Discoverable
Major Service Class

static final PHONE_MAJOR_CLASS = 0x200;
static final CELLULAR_MINOR_CLASS = 0x04;
:
LocalDevice localDevice;
DeviceClass deviceClass;
:
try {
localDevice = LocalDevice.getLocalDevice();
deviceClass = localDevice.getDeviceClass();
if (deviceClass.getMajorDeviceClass() == PHONE_MAJOR_CLASS) {
if (deviceClass.getMinorDeviceClass() == CELLULAR_MINOR_CLASS)

{
…..//Do something

}

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 63

Multiplayer Games

RemoteDevice class
static RemoteDevice
getRemoveDevice(javax.microedition.io.Connection) –
static method to retrieve the RemoteDevice object
associated with the passed Connection.
java.lang.String getBluetoothAddress() – retrieves the
Bluetooth address of the remote device. java.lang.String
getFriendlyName()– retrieves the name of the remote
device.
boolean authenticate() – attempts to authenticate the
remote device.
boolean isAuthenticated() – determines if this
RemoteDevice has been authenticated.
boolean isEncrypted() – determines if data exchanges
with this RemoteDevice are currently being encrypted.

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 64

Multiplayer Games

LocalDevice class
static LocalDevice getLocalDevice()
java.lang.String getBluetoothAddress()
java.lang.String getFriendlyName()
DiscoveryAgent getDiscoveryAgent()- returns the
discovery agent for this device.
boolean setDiscoverable(int mode) – sets the
discoverable mode of the device.
static java.lang.String getProperty(java.lang.String
property) – retrieves Bluetooth system properties. [refer
next slide]
ServiceRecord
getRecord(javax.microedition.io.Connection notifier) –
retrieves the service record corresponding to the passed
(btspp, btl2cap, or btgoep) notifier.

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 65

Multiplayer Games

Property
bluetooth.api.version
bluetooth.l2cap.receiveMTU.max
bluetooth.connected.devices.max
bluetooth.connected.inquiry
bluetooth.connected.page
bluetooth.connected.inquiry.scan
bluetooth.connected.page.scan
bluetooth.master.switch
bluetooth.sd.trans.max
bluetooth.sd.attr.retrievable.max

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 66

Multiplayer Games

Games Over Bluetooth
Bluetooth is suitable for ‘proximity gaming’ – playing
games with people around you
The low latency makes it suitable for real-time games
– driving games, shooting games, …
– but also card games, etc.

Up to 8 players, if master device supports point-to-
multipoint
Use L2CAP packets or RFCOMM streams

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 67

Multiplayer Games

Games over Bluetooth – Best Practices
Several Bluetooth actions at the same time does not
speed the application.
All Bluetooth activities consume bandwidth, which leads
to higher latency for the game. All Bluetooth activities
that do not belong to the game should be canceled.
Then the user should be asked to select a game client or
game host role.
Bluetooth provides a reliable connection; there is no need
to add a custom protocol for data correction or data
acknowledgement. Corrupted packets are retransmitted
until they are correctly received.
Use a protocol with little overhead, such as L2CAP.

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 68

Multiplayer Games

Game Update Strategies
Frame-based: clients operate synchronously with server,
displaying each frame as they receive its data.
BLUETOOTH
needs latency < 40ms or so

Dead reckoning: clients operate asynchronously from
server, predicting action and correcting when the server
sends updates
OK for Internet-level latencies, 100-200ms

Turn-based: clients take turn to act, when the server tells
them it’s their turn
OK even if latency is several seconds

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 69

Multiplayer Ga

Splash

Host game /
Join game

Search for
players

Wait for
connection

Choose
players Connect

Play

hosting game

joining game

Example Game Screen Map

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 70

Multiplayer Games

Bluetooth Latency
Using JSR-82, we measured round-trip latency of about
30ms
It gets worse if:
– many other devices are around
– you send data so fast it must be buffered
– your packets are bigger than your device’s packet size

(MTU)
– devices are far apart (so poor link quality and re-sends)

For more details see Forum Nokia document Games Over
Bluetooth: Recommendations to Game Developers

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 71

Multiplayer Games

Special Considerations for Nokia Devices
Low-Power Mode: if a Nokia device gets no Bluetooth
data for 15 seconds, it enters SNIFF mode, only checking
for new data every 0.5 seconds
– avoid this by sending an empty message every few seconds

if necessary

Link Loss: if the device receives no low-level Bluetooth
packets for 20 seconds, the link will be dropped
Disconnection: players will often leave a game before it
ends

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 72

Multiplayer Games

Demo Game: Paintball (Nokia)
Simple real-time ‘shooter’ game
Motion on a 16x16 grid
Master holds the game state

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 73

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 74

Multiplayer Games

master

slave

slave

slave

master

slave

slave

slave

move

update

update

move

fail

successful
move

unsuccessful
move

ack

Demo Game: Communications

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 75

Multiplayer Games

Problems with Bluetooth connections
Device and service discovery sometimes fail
Connection setup takes time
Connections can drop anytime
Latency
Threading
Testing!

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 76

Multiplayer Games

Hints & Tips
Pay attention to threading issues
Close connections on exit
Ignore cached devices, since you can’t find out their Class
of Device
On Series 60, prefer RFCOMM to L2CAP
Test with many devices, different devices, and with other
Bluetooth devices (e.g. headsets) in proximity

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 77

Multiplayer Games

Other topics
Use OBEX to exchange images
How to connect Bluetooth devices of different platforms
Understand Bluetooth security
How to develop multi-connection Bluetooth application
N-Gage Arena (SNAP) – full-scale mobile online game
environment
X-Box Live

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 78

Multiplayer Games

Some examples
It’s Alive (Swedish):
– “botfighters” www.botfighters.com
– Players chase each other to various cellular network

locations

Jamba (German):
– “Attack of the Killer Virus”
– Player shoots viruses/monsters projected to a real-life

environment shown through a lens of a camera phone. A
player has to move around with the camera to destroy the
viruses.

Warhol’s 15 minutes
– Messages -> game actions
– Shown to large audiences on TVs

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 79

Multiplayer Game: SNAP API

SNAP Overview
Package: com.nokia.sm.net
– Contains classes that support communication with a SNAP

Mobile game server.

SnapEventListener
– Callback interface for asynchronous SNAP Mobile event

notification.

ItemList
– This class implements a container for one or more items of

different types.

ServerComm
– This class facilitates communication between a game client

and a SNAP Mobile server.

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 80

Multiplayer Game: SNAP API

SNAP Overview
Communication between a game client and a SNAP Mobile
server. It provides methods for accessing online
multiplayer game and community features such as
– instant messaging,
– chat,
– presence management,
– buddy list (or friends list),
– versatile matchmaking, and
– ranking.

Implementation does not depend on the underlying
network protocol. At present, HTTP and TCP are the only
supported protocols, but other protocols may be added in
the future.

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 81

Multiplayer Game: SNAP API

SNAP Overview
Server Events:

SNAP Mobile servers generate events for certain actions
that take place, such as creating new lobbies or game
rooms, chat messages delivered to a particular user, and
so on.
These events are held on the server until retrieved by the
client.
Retrieving Events:
– Polling by client using methods such as

receiveEvents(int,int,int) and retrieveAllEvents().
– Client can register as a listener for SNAP events by calling

addSnapEventListener(). SNAP server calls back the client
when new events are available.

9/12/2006 7:46:17 PM© Bhojan ANAND. SoC, NUS Slide 82

Multiplayer Game: SNAP API

SNAP server

Demo Application

	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Games
	Multiplayer Game: SNAP API
	Multiplayer Game: SNAP API
	Multiplayer Game: SNAP API
	Multiplayer Game: SNAP API

