
© Bhojan ANAND. SoC,

In this lesson…

M
O
B
I
L
E

G
A
M
E
S

UI, Storage, AV

UI Design for Games
Menus and commands:

–High-level and low-level

Persistence Storage
Audio and Video

© Bhojan ANAND. SoC,

In this lesson…

M
O
B
I
L
E

G
A
M
E
S

UI, Storage, AV

UI Design for Games
High-level UI objects
Low level UI objects

Persistence Storage
Audio and Video

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 3

High-level User Interface APIs

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 4

Display and Displayable classes

The Display class is the manager of the actual
device’s display-screen and input.
To create or get an instance of this Display class,
the Display.getDisplay method is used. The
MIDlet it self is passed as an argument to the
Display.getDisplay method.
The displayable object of a MIDlet is shown on
the device’s screen through a call to
Display.setCurrent.

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 5

Display and Displayable classes

Display.getDisplay (this).setCurrent(HelloForm);

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 6

MIDP Screen - Alert

A standardized dialog displays a label, text and an
optional image for a short time.
Alert Types : ALARM, INFORMATION, ERROR, WARNING
and CONFIRMATION.

Alert alertMsg = new Alert("Alert Message","Are you
sure?",null, AlertType.CONFIRMATION);

alertMsg.setTimeout(alertMsg.FOREVER);
Display.getDisplay(this).setCurrent(alertMsg);

Implicit DISMISS_COMMAND. If the application adds any
other Commands to the Alert, DISMISS_COMMAND is
implicitly removed.
setIndicator(javax.microedition.lcdui.Gauge)
AlertType.playSound()

alertMsg.setTimeout(1000); - Display Alert for 1000ms, then Form
Display.getDisplay(this).setCurrent(alertMessage, HelloForm);

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 7

MIDP Screen - Form

This is the only container class in MIDP on which you can
place Items given below.
Items can be added to the Form using append() method.

Example : Form with imageItem and stringItem (Listing 3.3)

Item Description
ImageItem Used to place an image on a Form

StringItem Used to place a string on a Form

TextField Used to create a text input field on a Form

ChoiceGroup Used to create a choice group input field on a Form

DateField Used to create a date field on a Form

Guage Used to create a bar graph for given integer values

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 8

MIDP Screen - List

Displays a series of items for selection.
List types : IMPLICIT, EXCLUSIVE or MULTIPLE.

IMPLICIT: The application gets immediate
notification when an item is selected.
EXCLUSIVE: This option allows you to create an
option list where the users can select only one
item from the list.
MULTIPLE: This option allows you to create check
boxes where the users can select any number of
items. The method getSelectedFlags(Boolean[]
index) will return an array of Boolean representing
the selection of items by the user.

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 9

MIDP Screen : TextBox

The TextBox allows you to get multi-line text
input from the user.
You can control the input using constraint
constants.
A TextBox is constructed with a label, default
text, a maximum text size, and constraints to
control the type of input.

TextBox id = new TextBox("Enter PIN num", null, 8,
TextField.NUMERIC);

Display.getDisplay(this).setCurrent(id);

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 10

MIDP Screen : TextBox

TextBox constraint constants

public static final int ANY = 0;
public static final int EMAILADDR = 1;
public static final int NUMERIC = 2;
public static final int PHONENUMBER = 3;
public static final int URL = 4;
public static final int PASSWORD = 65536;
public static final int CONSTRAINT_MASK = 65535;

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 11

MIDP Screen : TextBox

Textbox Modifiers (Can be combined with constraint constant
using &)

PASSWORD
UNEDITABLE
SENSITIVE
NON_PREDICTIVE
INITIAL_CAPS_WORD
INITIAL_CAPS_SENTENCE

TextBox Modes- Internationalization (UniCode Blocks)

UCB_BASIC_LATIN
UCB_GREEK
UCB_HEBREW
UCB_ARABIC
UCB_DEVANAGARI

– textBox1.setInitialInputMode(UCB_BASIC_LATIN)

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 12

Item Class Object - StringItem

StringItem is used to create a simple read-only
text with a label to the user.

StringItem UIDlabel = new StringItem("User ID:","Anand");

demoForm.append(UIDlabel);

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 13

Item Class Object - TextField

The TextField MIDP component allows
constrained user input and is similar in usage to
the TextBox object.
The constructor takes same four parameters as
TextBox.

TextField textPwd = new TextField("Enter Password", "",
15,TextField.ANY);

demoForm.append(textPwd);

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 14

Item Class Object - ImageItem

ImageItem is a non-interactive item that is used
to display images.
In addition to the label, the ImageItem
constructor takes an Image object, a layout
parameter, and an alternative text string, which
will be displayed when the device is not able to
display the image for some reason.
Image objects can be constructed as mutable or
immutable. Mutable images can be changed
dynamically whereas immutable or static images
are loaded from some external source such as a
Portable Network Graphic (*png) file.

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 15

Item Class Object - ImageItem

Example : Image Item
Output :

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 16

Item Class Object - ImageItem

ImageItem layout constants

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 17

Item Class Object - DateField

DateField allows the user to view/edit the date and time
information. The presentation of date and time depends
on input mode, which takes one of the three possible
values.

Constant
name

Value Meaning

DATE 1 Allows the user to enter date only in the
DateField

TIME 2 Allows the user to enter time only in the
DateField

DATE_TIME 3 Allows the user to enter date and time
information in the DateField

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 18

Item Class Object - DateField

DateField appointTime = new DateField(“Exam Date:”,
DateField.DATE_TIME);

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 19

Item Class Object - ChoiceGroup

ChoiceGroup item is similar to the List screen used to
create a list of items on a Form for selection by the user.
These elements consist of simple Strings, but can
display an optional image per element as well. The
ChoiceGroup can be of either two types: EXCLUSIVE or
MULTIPLE.

Constant Meaning

EXCLUSIVE To create option list where the users can select only
one item from the list.

MULTIPLE To create check list where the users can select
multiple items

IMPLICIT Valid for List screen only. It lets the List to send the
state changes immediately.

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 20

Item Class Object - ChoiceGroup

A simple ChoiceGroup constructor takes a label and
choice type constant parameters to create an empty
ChoiceGroup. Additionally you can provide an array of
Strings and Images to be used as its initial contents.

Elements can be added dynamically by using append()
method. The Append method takes two parameters: a
text and an image.
Example : ChoiceGroup

private ChoiceGroup ch = new
ChoiceGroup("Select Service:", ChoiceGroup.EXCLUSIVE,
arr, null);

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 21

Item Class Object - Guage

Output

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 22

Item Class Object - Guage

Guage provides horizontal bar for a given integer value.
Gauge can be used to show progression of a task
visually or as a sliding ‘track bar’ that allows user
interaction.

public void startApp() {
Form progress = new Form("Progress");
Gauge G1 = new Gauge("Sending mail...", false, 100,

1);
progress.append(G1);
Display.getDisplay(this).setCurrent(progress);

}

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 23

Item Class Object - Ticker

Tickers are used to scroll the text across the screen
continuously. Tickers can be associated with several
screens at a time. You can use the Screen object’s
setTicker() method to associate the ticker with any
Screen (Form, Canvas, TextBox, Alert…).

Form mainForm = new Form("Anuflora International");
Ticker grt = new Ticker("Welcome to Anuflora International");
mainForm.setTicker(grt);

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 24

Receiving Changes form Interactive UI
Items

To receive the users response to the high-level user
interface objects within a Form screen, MIDP defines
ItemStateListener interface.
itemStateChanged() is the only method in the
ItemStateListener interface.
itemStateChanged(Item item) is called when the internal
state of an Item has been changed by the user.

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 25

Receiving Changes form Interactive UI
Items

User actions that causes state changes
Changes the set of selected values in a ChoiceGroup
Adjusts the value of an interactive Gauge
Enters or modifies the value in a TextField
Enters a new date or time in a DateField

Coding steps
Add the ItemStateListener interface in the class
declaration;
Implement the itemStateChanged() method in your class;
Register the ItemStateListener at the Form from which
you need to receive the events.

Example : ItemStateListener (3.10)

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 26

Commands & CommandListener

Commands allow the user to initiate some tasks.
Creating and using Command objects.

Constructing the Command. (Line number 4 in listing 3.11c)
Command qt = new Command("Quit", Command.EXIT, 1);
Command bk = new Command("Back", Command.BACK, 1);

Adding the command to Displayable. . (Line numbers 23,24 in listing
3.11c)

this.addCommand(qt);
this.addCommand(bk);

Defining your class with CommandListener interface (Line number 3
in listing 3.11c)

public class subForm extends Form implements
CommandListener

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 27

Commands & CommandListener

Creating and using Command objects.

Implementing the commandAction() method. (Line numbers 27 to 34
in listing 3.11c)

public void commandAction(Command command,
Displayable displayable) {
if (command == qt) {
Choices.quitApp();
}
else if (command == bk) {
Choices.display.setCurrent(lastScreen);
}
}

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 28

Commands & CommandListener

Creating and using Command objects.

Registering the CommandListener class to a Displayable. . (Line
number 21 in listing 3.11c)

setCommandListener(this);

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 29

Handling Timer Events

Timer can be used to trigger tasks at a given interval for
one or more repetitions.
Timer object is used to create Timer and the TimerTask
object is used to define a task to be done when the
timer expires.

Timer T = new Timer();
TimerTask task = new progerssTask();

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 30

Handling Timer Events

The TimerTask object defines a abstract method run()
that should be implemented by the application.
The run() method will be executed when ever the Timer
triggers the TimerTask.

class progressTask extends TimerTask {
public void run() {

/* Add codes that should be executed when the Timer triggers this
Task.*/

T.cancel(); // cancel the timer to stop triggering this task

}
}

T.schedule(task, 3000);
T.schedule(task, 3000, 1000);

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 31

Third-Party UI objects for MIDP

www.j2mepolish.org

http://www.j2mepolish.org/

© Bhojan ANAND. SoC,

In this lesson…

M
O
B
I
L
E

G
A
M
E
S

UI, Storage, AV

UI Design for Games
High-level UI objects
Low level UI objects

Persistence Storage
Audio and Video

This part is for your own reading/reference

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 33

Canvas Screen

Canvas
Pixel level access to screen
Keyboard and pointer events
Abstract method paint()
repaint() method
Example : Simple Drawing – Listing 4.1b

Graphics class
Graphics object provides simple 2-D geometric
rendering capability. Drawing primitives are
provided for text, images, lines, rectangles, and
arcs. Rectangles and arcs may also be filled with a
solid color.
Double buffering, also known as screen
swapping, is a common graphics technique to
reduce flicker in animations.

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 34

Canvas Screen

Output for listing 4.1b

Figure 4.2 Simple Drawing

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 35

Drawing Methods
Method Purpose

drawString(String text,
int x, int y, int anchor)

Draws the specified String at the
given position using the current
font and color.

drawImage(Image
image, int x, int y, int
anchor)

Draws the specified image at the
given position.

drawLine(int x1, int y1,
int x2, int y2)

Draws a line between the
coordinates (x1,y1) and (x2,y2)
using the current color and
stroke style.

drawRect(int x, int y,
int width, int height)

Draws the outline of the specified
rectangle using the current color
and stroke style

fillRect(int x, int y,
int width, int height)

Draws a filled rectangle with the
current color.

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 36

Drawing Methods

Method Purpose

setColor(int red,
int green, int blue)

Sets the current color to the
specified RGB values

setFont(Font font) Sets the font for all subsequent
text rendering operations

setGrayScale(int value) Sets the current grayscale to be
used for all subsequent rendering
operations

setStrokeStyle(int style) Sets the stroke style used for
drawing lines, arcs, rectangles,
and rounded rectangles

Refer table 4.2 for other methods

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 37

Coordinate System

The coordinate system represents locations between
pixels, not the pixels themselves.

Figure 4.3 Coordinate System

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 38

Coordinate System

The origin of the coordinate system can be changed using
the translate (int x, int y) method. It will add the
coordinates (x,y) with all the subsequent drawing
operations automatically. For example,

g.translate(getWidth()/2,getHeight/2)
–will cause the center point of the screen

to be the origin for the subsequent
drawings.

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 39

Clipping

A clip is a rectangle region in the destination of the
Graphics object that responds to the subsequent
drawing operations. There can be one clip per Graphics
object.

Method Purpose

setClip(int x, int y,
int width, int height)

Sets a new rectangle clip region
specified by the coordinates.
Subsequent drawings will be
effective only inside this region. Any
drawing outside this region will be
ignored.

getClipX(), getClipY(),
getClipHeight(),
getClipWidth()

Returns the X offset, Y offset, height
and width of the current clipping
area.

Table 4.3 Methods of Graphics class for clipping

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 40

Clipping

Listing 4.2 Clipping Demo

28. /** Required paint implementation */
29. protected void paint(Graphics g) {
30. g.setColor(255,255,255);
31. g.fillRect(0,0,getWidth(),

getHeight());
32. g.setColor(0,0,0);
33. g.drawArc(30,30,130,100,0,360);
34. g.setStrokeStyle(g.DOTTED);
35. g.drawRect(40,40,110,80);
36. g.setClip(40,40,110,80);
37. g.setColor(0,255,0);
38. g.fillArc(30,30,130,100,0,360);
39. }
40. }

Figure 4.4

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 41

Drawing Texts

The method drawString() is used to draw text on the
screen.
setFont() sets the font for subsequent text rendering to
the Font passed as parameter to the setFont() method.
Font class

To create a Font object, the lcdui defines a Font class
with the getFont() method which takes three
parameters: Size, Style and Face.
getFont(int face, int style, int size)

Parameter Constants

Face FACE_SYSTEM, FACE_MONOSPACE,
FACE_PROPORTONAL

Style STYLE_PLAIN, STYLE_ITALIC,
STYLE_BOLD, STYLE_UNDERLINED

Size SIZE_SMALL, SIZE_MEDIUM,SIZE_LARGE

Table 4.5 getFont() parameters

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 42

Drawing Texts

Figure 4.5 Anchor points

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 43

Drawing Images

drawImage() – displays mutable images.
Creating mutable image from immutable images

Example: Refer Listing 4.3 and Figure 4.6 in
Text book. Page 94.

Image logo;
logo =
Image.createImage(“/graphicsDemo/logo.gif”);
Image mutableLogo =

Image.createImage(logo.getWidth(),
logo.getHeight());

Graphics g = mutableLogo.getGraphics();
g.drawImage(logo, 0, 0, TOP|LEFT);

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 44

Drawing Images

Anchor points of an Image (Figure 4.7)

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 45

Event Handling : Keyboard

Key events return a Key Codes, which are directly bounded
to the physical keys. The mapping from key to key code is
device dependent.
MIDP defines the following key codes, which represents
the keys on a ITU-T standard keypad: KEY_NUM0,
KEY_NUM1, KEY_NUM2, KEY_NUM3, KEY_NUM4,
KEY_NUM5, KEY_NUM6, KEY_NUM7, KEY_NUM8,
KEY_NUM9, KEY_STAR, KEY_POUND.
Canvas defines another method getKeyName() which
returns the name of the key for the given key code.
Canvas provides the following key event callback methods:
keyPressed(), keyReleased(), and keyRepeated().

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 46

Event Handling : Keyboard

Applications, which need only game related events and
arrow key events, can use the game actions rather than
key codes to maximize portability.
MIDP has defined the following game actions: UP,
DOWN, LEFT, RIGHT, FIRE, GAME_A, GAME_B,
GAME_C, and GAME_D. The game actions are
mapped to one or more keys.
Portable applications can call the getGameAction()
method to get the game action represented by the given
key code.
Example: Listing 4.4 events and game actions

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 47

Event Handling : Pointing Device

Pointing devices – mouse, touch screen, stylus
and trackball, etc.
Canvas class provides three methods to handle pointer
events: pointerPressed(), pointerDragged(), and
pointerReleased().
Example : Listing 4.5 Pointer events demo.

© Bhojan ANAND. SoC,

In this lesson…

M
O
B
I
L
E

G
A
M
E
S

UI, Storage, AV

UI Design for Games
High-level UI objects
Low level UI objects

Persistence Storage
Audio and Video

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 49

RecordStore & Records

A record store is a collection of records that will remain
persistent in the local storage of the device.
A record store can be shared across multiple MIDlets in
a same MIDlet suite and must have a unique name in
the MIDlet suite.
The record store is time stamped with the last
modification date/time. The record store also maintains
a version. These data will be useful for the
synchronization of engines and applications.
Records are arrays of bytes of variable length.

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 50

Creating a Record Store

To create a RecordStore use the openRecordStore()
method that takes a record store name and a Boolean.
If the Boolean is true, then a new RecordStore will be
created if the RecordStore is not available.
The method addRecord() is used to add a record to the
RecordStore. The addRecord() method takes a byte
array, starting index, and number of bytes to copy into
the record. The method returns a unique ID for the
record, which is the record ID.

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 51

Creating a RecordStore

Example

1. try {
2. RecordStore rs =RecordStore.openRecordStore(“PhoneBook”, true);
3. rs.addRecord(“Mikhy=96709990”.getBytes(),0,14);
4. rs.closeRecordStore();
5. } catch (RecordStoreException e) {
6. e.printStackTrace();
7. }
8. }

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 52

RecordStore Methods

Static RecordStore ManipulationMethods
(Table 5.1)

Records Manipulation Methods (Table 5.1)
Record Store Metadata (Table 5.1)

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 53

RecordEnumeration

RecordEnumeration logically maintains the
sequence of record-Ids in a new record store.
RecordEnumeration Interface is defined in rms.
(javax.microedition.rms)
Functions :

Traverse through the records. (forward and
backward.)
Retrieve records by criteria. (search.)
Sort records in an application defined order.

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 54

Simple RecordEnumeration

Example: RecordEnumeration without Filtering
and Sorting.

RecordStore rs = null;
RecordEnumeration enum = null;
String recordContents;

rs= RecordStore.openRecordStore(“PhoneBook”,true);
enum = rs.enumerateRecords(null, null, true);
while (enum.hasNextElement()) {

recordContents = new String(enum.nextRecord());
}
rs.closeRecordStore();

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 55

RecordEnumeration With Filtering

RecordEnumeration methods.
(Table 5.3)

To Filter records based on a criteria
Define a class that implements the RecordFilter
Interface.
Hook your RecordFilter to your enumerator by
instantiating the RecordFilter class in the call to
enumerateRecords.

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 56

RecordEnumeration With Filtering

Example
Defining RecordFiler class

Hooking RecordFilter to your enumerator

public class recordSelectFilter implements RecordFilter {

public boolean matches (byte[] data) {

return (data[0] == txtfldSelect.getString().getBytes() [0]);

}

}

enum = rs.enumerateRecords(new recordSelectFilter(), null, true);

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 57

Sorting Records

Example:
Defining a class that implements
RecordComparator Interface

public class alphabeticalOrder implements RecordComparator {
public int compare(byte [] byArrRecord1, byte[] byArrRecord2) {

int compareResult = new String (byArrRecord1). compareTo (new String
(byArrRecord2));

int result = EQIVALENT;
if (compareResult < 0) {
result = PRECEDES;

} else if (compareResult > 0) {
result = FOLLOWS;

}

return(result);
}

}

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 58

Sorting Records

Example:
Hooking RecordComparator to your enumerator

enum = rs.enumerateRecords (null,
new alphabeticalOrder(), true);

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 59

Record Change Notification

RMS defines the RecordListener interface for
receiving Record Change events in an application
from a record store.
By creating a class that implements the methods
of RecordListener interface, you can receive
Record Change events.
RecordListener abstract methods are described
below:

recordAdded(RecordStore recordStore, int recordId)
recordChanged(RecordStore recordStore, int recordId)
recordDeleted(RecordStore recordStore, int recordId)

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 60

Record Change Notification

Example : Listing 5.2
Add the recordListener to the RecordStore

pals.addRecordListener(new
recordStoreListener());

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 61

Record Change Notification

Figure 5.2: Output for Listing 5.2

RMS
domo

© Bhojan ANAND. SoC,

In this lesson…

M
O
B
I
L
E

G
A
M
E
S

UI, Storage, AV

UI Design for Games
High-level UI objects
Low level UI objects

Persistence Storage
Audio and Video

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 63

Mobile Media API Architecture (MMAPI)

Targets CLDC devices. (For MIDP : A subset of
MMAPI called MIDP Media API is defined.)
Four fundamental objects :

Player : Intercepts media data received from the
DataSource.
– javax.microedition.media.Player

Control : To control the Player. [Play, Stop, ff]
– javax.microedition.media.Control : all controls
– javax.microedition.media.controls : specific control

DataSource : Knows how to get media data from
its original location. (HTTP, RMS)
– javax.microedition.media.protocol.Datasource

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 64

Mobile Media API Architecture (MMAPI)

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 65

Mobile Media API Architecture (MMAPI)

Four fundamental objects :
Manager : Serves as an entry point to the API.
Has abstract methods for obtaining playerS and
datasourceS.
– javax.microedition.media.protocol.Manager

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 66

Creating a Player & playing audio

Extract from Listing 7.1
public void playMID() {

try {
Player p = Manager.createPlayer

("http://localhost:8081/mcom/av/hotel.mid");
p.setLoopCount(5);
p.start();

} catch (IOException ioe) { }
catch (MediaException e) { }

}

Data Source at WWW

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 67

Other DataSources for Playing audio

Playing audio from local file

Playnig audio from record store

try {
InputStream is = getClass().getResourceAsStream("paradise.wav");
Player p = Manager.createPlayer(is, "audio/X-wav");
p.start();} catch (IOException ioe) {} catch (MediaException me) { }

// set up RecordStore rs with the music files.
try {
InputStream is = new ByteArrayInputStream(rs.getRecord(recordID));
Player p = Manager.createPlayer(is, "audio/X-wav");
p.start();} catch (IOException ioe) {} catch (MediaException me) { }

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 68

Controlling a Player

Figure 7.2 : Player state transition

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 69

Controlling a Player

Player Interface Methods
– Table 8.2

Listening a Player
p.addListener(new Listener());
Define Listener class that implements the
PlayerListener interface by defining its
playerUpdate() method

– Player Events Table 8.3

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 70

Playing a Video

Listing 8.2a : Video Player demo

public void playMPG() {
Player p;
VideoControl vc;
try {

p = Manager.createPlayer
("http://localhost:8081/mcom/av/dancers.mpg");

p.realize();
vc=(VideoControl)p.getControl("VideoControl");
if (vc != null) { Form form = new Form("video");

form.append((Item)vc.initDisplayMode
(vc.USE_GUI_PRIMITIVE, null));

Display.getDisplay(this).setCurrent(form);
}
p.start();

} catch (IOException ioe) { }
catch (MediaException e) { }

}

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 71

MMAPI demo

Audio/Video demo

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 72

Playing a User-Defined Tone

The following code snippet plays a tone
(ToneControl.C4) for 4000 milliseconds with a maximum
(100) volume level.

try {
Manager.playTone(ToneControl.C4, 4000, 100);

} catch (MediaException e) { }

Game UI, Persistence Storage, Audio & Video

9/20/2006 10:52:37 AMBhojan Anand Slide 73

Capturing and Recording

A camera has a special URI string ‘capture://video’ that
is used to create its Player.

p = Manager.createPlayer("capture://video");

VideoControl.getSnapshot(String imageType);
– is used to capture a camera's picture.

Demo: MMAPI

	UI, Storage, AV
	UI, Storage, AV
	High-level User Interface APIs
	Display and Displayable classes
	Display and Displayable classes
	MIDP Screen - Alert
	MIDP Screen - Form
	MIDP Screen - List
	MIDP Screen : TextBox
	MIDP Screen : TextBox
	MIDP Screen : TextBox
	Item Class Object - StringItem
	Item Class Object - TextField
	Item Class Object - ImageItem
	Item Class Object - ImageItem
	Item Class Object - ImageItem
	Item Class Object - DateField
	Item Class Object - DateField
	Item Class Object - ChoiceGroup
	Item Class Object - ChoiceGroup
	Item Class Object - Guage
	Item Class Object - Guage
	Item Class Object - Ticker
	Receiving Changes form Interactive UI Items
	Receiving Changes form Interactive UI Items
	Commands & CommandListener
	Commands & CommandListener
	Commands & CommandListener
	Handling Timer Events
	Handling Timer Events
	Third-Party UI objects for MIDP
	UI, Storage, AV
	Canvas Screen
	Canvas Screen
	Drawing Methods
	Drawing Methods
	Coordinate System
	Coordinate System
	Clipping
	Clipping
	Drawing Texts
	Drawing Texts
	Drawing Images
	Drawing Images
	Event Handling : Keyboard
	Event Handling : Keyboard
	Event Handling : Pointing Device
	UI, Storage, AV
	RecordStore & Records
	Creating a Record Store
	Creating a RecordStore
	RecordStore Methods
	RecordEnumeration
	Simple RecordEnumeration
	RecordEnumeration With Filtering
	RecordEnumeration With Filtering
	Sorting Records
	Sorting Records
	Record Change Notification
	Record Change Notification
	Record Change Notification
	UI, Storage, AV
	Mobile Media API Architecture (MMAPI)
	Mobile Media API Architecture (MMAPI)
	Mobile Media API Architecture (MMAPI)
	Creating a Player & playing audio
	Other DataSources for Playing audio
	Controlling a Player
	Controlling a Player
	Playing a Video
	MMAPI demo
	Playing a User-Defined Tone
	Capturing and Recording

