
© Bhojan ANAND. SoC,

In this lesson…

M
O
B
I
L
E

G
A
M
E
S

3D Mobile Games

3D Mobile Games
Immediate mode
Retained mode

© Bhojan ANAND. SoC,

In this lesson…

M
O
B
I
L
E

G
A
M
E
S

3D Mobile Games

3D Mobile Games
Retained mode
Immediate Mode

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 3

Mobile 3D Graphics API

Operating System & KVM
OpenGL ES
or other
Native 3D library

CLDC 1.1

MIDP 2.0
Mobile 3D Graphics
API – M3G
(optional package)

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 4

Overcome the performance barrier

Native (C/C++) vs. Java on mobiles

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Vertex transformation Image downsampling

R
el

at
iv

e
sp

ee
d

Native code
CLDC 1.1 HI
Jazelle™
KVM

Benchmarked on an ARM9 processor Source: nokia.com

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 5

Why a new standard?

OpenGL (ES) is too low-level
Lots of Java code needed for simple things

Java 3D™ API is too bloated
A hundred times larger than M3G
Does not fit together with MIDP
Tried and failed, but…

Now knew what we wanted!
Basic Java 3D™ ideas: nodes, scene graph
Add file format, keyframe animation
Remain compatible with OpenGL ES

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 6

Graphics3D

Contains global state
Target surface, viewport, depth buffer
Camera, light sources
Rendering quality hints

Each renderable object has its own local state
Geometry and appearance (material, textures,
etc.)
Transformation relative to parent or world

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 7

Graphics3D: Rendering modes

Retained mode
Render a scene graph, rooted by the World
Take the Camera and Lights from the World

Immediate mode
Render a branch or an individual node at a time
Explicitly give the Camera and Lights to
Graphics3D

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 8

Graphics3D

Using Graphics3D
Bind a target to it
Render it
release the target

Graphics3D g3d = Graphics3D.getInstance();
World w = (World) Loader.load("/file.m3g")[0];
void paint(Graphics g) {

myGraphics3D.bindTarget(g);
myGraphics3D.render(world);
myGraphics3D.releaseTarget();

}

Note: Everything is synchronous
A method returns only when it’s done
No separate thread for renderer or loader

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 9

Graphics3D: Rendering targets

Graphics Canvas

Image

CustomItem

Graphics3D Image2D

World

M3G

MIDP

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 10

A simplified animation player
import javax.microedition.midlet.MIDlet;
import javax.microedition.lcdui.Display;
import javax.microedition.lcdui.game.GameCanvas;
import javax.microedition.m3g.*;

public class Player extends MIDlet
{
public void pauseApp() {}

public void destroyApp(boolean b) {}

public void startApp() {
PlayerCanvas canvas = new PlayerCanvas(true);
Display.getDisplay(this).setCurrent(canvas);
try { canvas.disp(); } catch (Exception e) {}
notifyDestroyed();

}
}

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 11

A simplified animation player
class PlayerCanvas extends GameCanvas {
PlayerCanvas(boolean suppress){super(suppress);}

public void disp() throws Exception {
Graphics3D g3d = Graphics3D.getInstance();
World w = (World) Loader.load("/skaterboy.m3g")[0];
long start, elapsed, time = 0;
while (getKeyStates() == 0) {

start = System.currentTimeMillis();
g3d.bindTarget(getGraphics());
try {

w.animate((int)time);
g3d.render(w);

} finally { g3d.releaseTarget(); }
flushGraphics();
elapsed = System.currentTimeMillis()-start;
time += (elapsed < 100) ? 100 : (int)elapsed;
if (elapsed < 100) Thread.sleep(100-elapsed);

}
}

}

Returns reference
to object at index 0.
-> Root - World

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 12

Obtaining Objects in the World

Camera getActiveCamera();
Backgruond getBackground();
Every Object3D can be assigned a user ID,
either at authoring stage or at run time with the
setUserID method. User IDs are typically used to
find a known object in a scene loaded from a
data stream.
Object3D find(int userID);

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 13

The scene graph

SkinnedMesh

Group

Group

Group

Mesh

Sprite

Light

World

Group Camera

Group MorphingMesh

Not allowed!

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 14

Obtaining
Objects in
the World

DEMO

© Bhojan ANAND. SoC,

In this lesson…

M
O
B
I
L
E

G
A
M
E
S

3D Mobile Games

3D Mobile Games
Retained mode
Immediate Mode

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 16

Rendering Loop

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 17

Using the VertexArray

VertexArray(int numVertices, int numComponents,
int componentSize)

» numVertices - number of vertices in this
VertexArray; must be [1, 65535]

» numComponents - number of components
per vertex; must be [2,3,4]

» componentSize - number of bytes per
component; must be [1, 2]

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 18

Defining the vertices of a triangle
Example 1:
short[] vertices = { 0, 0, 0, 3, 0, 0, 0, 3, 0};
VertexArray vertexArray = new VertexArray(vertices.length / 3, 3, 2);
vertexArray.set(0, vertices.length/3, vertices);

-VertexArray is an M3G class that holds
an array of triplets – (x, y, z).
[also (x,y) for texture and (a,b,c,d) for colors]

-Many methods in M3G take VertexArray
as an input argument.

Vertex positions must have 3 components.
Normal vectors must have 3 components.
Texture coordinates must have 2 or 3 components.
Colors must have 3 or 4 components, one byte each.

set(int firstVertex, int numVertices, byte[] values)
Copies in an array of 8-bit vertex attributes.

set(int firstVertex, int numVertices, short[] values)
Copies in an array of 16-bit vertex attributes.

Other Methods: get(int firstVertex, int numVertices, byte[] values),
get(int firstVertex, int numVertices, short[] values),
int getComponentCount(), int getComponentType(),
int getVertexCount()

A: 0,0,0 B: 3,0,0

C: 0,3,0

A->B->C

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 19

Example 2:

byte[] normals = { 0, 0, 127, 0, 0, 127, 0, 0, 127};
VertexArray normalsArray = new VertexArray(normals.length /3, 3, 1);
normalsArray.set(0, normals.length/3, normals);

- Normals indicate which side of a triangle gets lighting and
effects. (Side of triangle facing you, positive z axis)

- The normal of a surface is always perpendicular (at 90 degrees)
to the surface itself.

- Each vertex will have a normal

Defining normals of a triangle

x

y

z

Points out towards
you from the screen (z)

8-bit value

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 20

VertexBuffer – Combine vertex info.

VertexBuffer holds references to VertexArrays that contain
the positions, colors, normals, and texture coordinates for
a set of vertices.
The elements of these arrays are called vertex attributes.

Source: sun.com

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 21

VertexBuffer – Combine vertex info.

Example:
VertexBuffer verbuf = mVertexBuffer = new VertexBuffer();
verbuf.setPositions(vertexArray, 1.0f, null);
verbuf.setNormals(normalsArray);

setNormals(VertexArray normals)
Sets the normal vectors for this VertexBuffer.

setPositions(VertexArray positions, float scale, float[] bias)
Sets the vertex positions for this VertexBuffer.

Other Methods:
VertexArraygetColors(), int getDefaultColor(), VertexArray

getNormals(), VertexArray getPositions(float[] scaleBias), VertexArray
getTexCoords(int index, float[] scaleBias), int getVertexCount(), void
setColors(VertexArray colors), void setDefaultColor(int ARGB) , void
setNormals(VertexArray normals), void
setPositions(VertexArray positions, float scale, float[] bias), void
setTexCoords(int index, VertexArray texCoords, float scale, float[] bias)

m3g performance optimisation

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 22

Mesh
Common buffer of vertex data
An object that can be rendered in M3G is contained in a submesh.
One or more Appearance for each submesh
In M3G 1.0, the only submesh available is a TriangleStripArray (subclass of
IndexBuffer).

Source: sun.com

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 23

Mesh

Mesh(VertexBuffer vertices, IndexBuffer[] submeshes,
Appearance[] appearances)

Constructs a new Mesh with the given VertexBuffer and
submeshes.
Mesh(VertexBuffer vertices, IndexBuffer submesh,
Appearance appearance)

Constructs a new Mesh consisting of only one submesh.

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 24

Triangle Strips

An IndexBuffer defines a submesh. TriangleStripArray is a submesh. A
triangle strip can represent multiple adjoining triangles. That is a triangle
strip is a polygon. TriangleStripArray submesh is a group of polygons.
The triangle strips are formed by indexing the vertex coordinates and
other vertex attributes in an associated VertexBuffer.
All submeshes in a Mesh share the same VertexBuffer.
M3G allows for a strip with an arbitrary number of triangles. Which
means, a triangle strip can be used to create any arbitrary polygon.
All triangles in a strip share common side(s) with others.
TriangleStripArray in M3G can use a compact way of specifying vertices
for multiple triangles.

Three vertices -> one triangle
How many vertices are needed to specify 2 adjoining triangles?

A: 0,0,0 B: 3,0,0

C: 0,3,0

A->B->C

A: 0,0,0 B: 3,0,0

C: 0,3,0 D: 3,3,0

A->B->C->D

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 25

Defining a SubMesh with TriangleStripArray

int[] stripLength = { 3 };
IndexBuffer mIndexBuffer = new

TriangleStripArray(0, stripLength);
-a strip array with one triangle (polygon).

TriangleStripArray(int firstIndex, int[] stripLengths)
Constructs a triangle strip array with implicit indices.
- every additional vertex will define a new Triangle.
- {0,0,0. 3,0,0, 0,3,0, 3,3,0 } == > Is a square with 2

Triangles. A strip array with 2 Triangles (2 polygons).
The TriangeStripArray keeps track of where one strip ends
and the next one starts.
Explicit Index

int[] stripLength = { 3, 4, 3 };
IndexBuffer mIndexBuffer = new TriangleStripArray(0,
stripLength);

- 3 strips (3 polygons) (0,1,2), (3,4,5,6), (7,8,9)
- Constructs a triangle strip array with explicit indices.

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 26

Giving an Appearance to the Submesh

Groups a set of objects that control how a
Submesh will appear when it is rendered.

These objects are called rendering attributes.

private Background mBackground = new Background();
private Appearance mAppearance = new Appearance();
private Material mMaterial = new Material();
mMaterial.setColor(Material.DIFFUSE, 0xFF0000);
mMaterial.setColor(Material.SPECULAR, 0xFF0000);
mMaterial.setShininess(100.0f);
mAppearance.setMaterial(mMaterial);
mBackground.setColor(0x00ee88);

Material is one of the rendering attribute.

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 27

Material

Controls the color and how light will reflect off the
submesh being rendered.
- void setColor(int target, int ARGB)

Sets the given value to the specified color component(s) of this
Material. [the alpha component is ignored for all but the diffuse color]
- void setShininess(float shininess)

Sets the shininess of this Material. [0 (dull) to 128 (shiny)]
Targets (Material’s color targets):

Other methods: int getColor(int target), float getShininess(), boolean
isVertexColorTrackingEnabled(),
void setVertexColorTrackingEnable(boolean enable).

AMBIENT The ambient color component, the color of the material that
is revealed by ambient (evenly distributed) lighting.

DIFFUSE The diffuse color component, the color of the
material that is revealed by a directional lighting

EMISSIVE The emission color component, the color of the material that
appears to be glowing

SPECULAR The specular color component, the color displayed in the
reflection highlights

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 28

Material
How the final, lit color is obtained for a vertex?
An Appearance component encapsulating material attributes for lighting
computations. Other attributes required for lighting are defined in Light,
PolygonMode and VertexBuffer.

Source: sun.com
If tracking is enabled, values from

vertexbuffer color array is taken.

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 29

Material

Default attribute values of Material object

new Material();
vertex color tracking : false (disabled)
ambient color : 0x00333333 (0.2, 0.2, 0.2, 0.0)
diffuse color : 0xFFCCCCCC (0.8, 0.8, 0.8, 1.0)
emissive color : 0x00000000 (0.0, 0.0, 0.0, 0.0)
specular color : 0x00000000 (0.0, 0.0, 0.0, 0.0)
shininess : 0.0

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 30

Background

Backgraound object is an M3G object, that is
used to render the background.
Note - In retained-mode Background object is a
part of World object.
Background can be either an Image2D or Color

void setImage(Image2D image);
void setColor(int ARGB)

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 31

Camera

Camera is an m3g class that controls what you
see in the rendering
Camera has a position and rendering.
Camera attributes: field of view, aspect ratio,
and clipping panes. Anything outside the field of
view and clipping pane is not computed for
rendering.

mCamera.setPerspective(60.0f,
(float)getWidth()/ (float)getHeight(),
1.0f, 1000.0f);

60 deg field of view (controls how
much of the scene you can see)

Aspect ratio is
same as Canvas

Near and far clipping panes

Question: If near = far, what will be the View Volume?

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 32

Light

Light (a m3g class) has a position and rendering.
Light Attributes:- color, different modes (eg spot
light vs diffused light), intensity, etc.

mLight.setColor(0xffffff);
mLight.setIntensity(1.25f);

Brighter than default.

Default mode: directional spot light
Default intensity: 1

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 33

Rendering
mGraphics3D.clear(mBackground);

mTransform.setIdentity(); //Replaces this transformation with the
4x4 identity matrix.

mTransform.postTranslate(0.0f, 0.0f, 10.0f);
mGraphics3D.setCamera(mCamera, mTransform);

mGraphics3D.resetLights();
mGraphics3D.addLight(mLight, mTransform);

mAngle += 1.0f;
mTransform.setIdentity();
mTransform.postRotate(mAngle, 0, 1.0f, 0);
mGraphics3D.render(mVertexBuffer, mIndexBuffer, mAppearance,

mTransform);

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 34

Demo

Putting it all together
Triangle demo
Square demo

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 35

Culling

Culling is an optimisation technique
Culling avoids rendering surfaces that are never
shown, and therefore saves on computation
required during rendering.
Disabling
– PolygonMode is an m3g class representing a

rendering attribute. It is grouped by an Appearance
instance and can be used to control culling. [Default
– CULL_BACK]

PolygonMode tPoly = new PolygonMode();
tPoly.setCulling(PolygonMode.CULL_NONE);
mAppearance.setPolygonMode(tPoly);

Demo

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 36

Creating a cube with 3 panes

3 Strips of a cube (representing 3 sides/panes)
x-y, y-z, x,z

Defining vertexes for the three strips
Strip 1 (x-y): (0,0,0),(3,0,0),(0,3,0),(3,3,0)
Strip 2 (y-z): (3,0,0),(3,3,0),(3,0,-3),(3,3,-3)
Strip 3 (x-z): (0,0,0),(3,0,0),(0,0,-3),(3,0,-3)

short[] vertices = {
0, 0, 0, 3, 0, 0, 0, 3, 0, 3, 3, 0,
3, 0, 0, 3, 3, 0, 3, 0, -3, 3, 3, -3,
0, 0, 0, 3, 0, 0, 0, 0, -3, 3, 0, -3

};
VertexArray vertexArray = new VertexArray(vertices.length / 3, 3, 2);
vertexArray.set(0, vertices.length/3, vertices);
VertexBuffer mVertexBuffer = new VertexBuffer();
mVertexBuffer.setPositions(vertexArray, 1.0f, null);

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 37

Creating a cube with 3 panes

Normals corresponding to the vertices

byte[] normals = {
0, 0, 127, 0, 0, 127, 0, 0, 127, 0, 0, 127,
127, 0, 0, 127, 0, 0, 127, 0, 0, 127, 0, 0,
0, -127, 0, 0, -127, 0, 0, -127, 0, 0, -127, 0

};

VertexArray normalsArray = new VertexArray(normals.length / 3, 3,
1);

normalsArray.set(0, normals.length/3, normals);
VertexBuffer mVertexBuffer = new VertexBuffer();
mVertexBuffer.setNormals(normalsArray);

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 38

TextureMapping the Cube Exterior

Applying Texture

(0,1)
(1,1)

(0,0) (1,0)

Texturing – Mapping an image to
Triangle Strips
-Texture is in 2D (2D Image)
- Texture coordinates – Tells m3g, how
to place the texture on the surface by
anchoring specific texture points to the
vertices.

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 39

TextureMapping the Cube Exterior

Applying Texture
short[] texturecords = {

0,1, 1,1, 0, 0, 1, 0,
0,1, 0,0, 1, 1, 1, 0,
0,0, 1,0, 0, 1, 1, 1 };

VertexArray textureArray =
new VertexArray(texturecords.length / 2, 2, 2);

textureArray.set(0, texturecords.length/2, texturecords);

int[] stripLength = { 4, 4, 4};

VertexBuffer mVertexBuffer = new VertexBuffer();
vertexBuffer.setTexCoords(0, textureArray, 1.0f, null);

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 40

TextureMapping the Cube Exterior

Texture coordinates may have either two or
three components.
If the third component is not given, it is
implicitly set to zero.
The components are interpreted in (S, T) or (S,
T, R) order, each component being a signed 8-
bit or 16-bit integer.
Texture coordinates have associated with them a
uniform scale and a per-component bias, which
behave exactly the same way as with vertex
positions. Non-uniform scaling is not supported,
so as to make texture coordinates behave
consistently with vertex positions.

3D Mobile Games

10/4/2006 8:09:08 PMBhojan Anand Slide 41

TextureMapping the Cube Exterior

Image for texture
Use m3g’s Image2D

new Image2D(int format, Object image)

– Format
» RGB, RGBA, ALPHA, LUMINANCE,

LUMINANCE_ALPHA

Image mImage;
mImage = Image.createImage(“/texture.png”);
Image2D image2D = new Image2D(Image2D.RGB, mImage);
//adding texture to Appearance
Texture2D texture = new Texture2D(image2D);
mAppearance.setTexture(0, texture);

DEMO
Less memory usage: Use Image2D.Load instead of CreateImage

	3D Mobile Games
	3D Mobile Games
	Mobile 3D Graphics API
	Overcome the performance barrier
	Why a new standard?
	Graphics3D
	Graphics3D: Rendering modes
	Graphics3D
	Graphics3D: Rendering targets
	A simplified animation player
	A simplified animation player
	Obtaining Objects in the World
	The scene graph
	Obtaining Objects in the World
	3D Mobile Games
	Rendering Loop
	Using the VertexArray
	Defining the vertices of a triangle
	Defining normals of a triangle
	VertexBuffer – Combine vertex info.
	VertexBuffer – Combine vertex info.
	Mesh
	Mesh
	Triangle Strips
	Defining a SubMesh with TriangleStripArray
	Giving an Appearance to the Submesh
	Material
	Material
	Material
	Background
	Camera
	Light
	Rendering
	Demo
	Culling
	Creating a cube with 3 panes
	Creating a cube with 3 panes
	TextureMapping the Cube Exterior
	TextureMapping the Cube Exterior
	TextureMapping the Cube Exterior
	TextureMapping the Cube Exterior

