
CS5201 1

NATIONAL UNIVERSITY OF SINGAPORE
SCHOOL OF COMPUTING

EXAMINATION FOR
Semester 2, 2005/2006

CS5201 - FOUNDATION IN THEORETICAL CS

April 2006 Time Allowed: 3 Hours

INSTRUCTIONS TO CANDIDATES

1. This examination paper contains four(4) long questions and comprises five (5) pages, including
this page.

2. Answer three out of four questions.

3. Each question should be answered in a separate answer book.

4. This is an OPEN BOOK examination.

5. Please write your Matriculation Number below.

MATRICULATION NO.:

(This portion is reserved for the examiner’s use only)

Question Marks P/F Remark

1. Theory of Comp.

2. Algorithms

3. Logic

4. Prog. Languages

Total

CS5201 2

1. Theory of Computation

A Consider a set of strings Lc over the alphabet Σ = {0, 1} where Lc contains exactly the set of strings
over Σ with length c (for some positive integer constant c). Your professor has tried to construct
the following argument in an attempt to show that the language Lc is not regular.

Let us assume that Lc is regular. Consider the string 0c ∈ Lc. From the pumping lemma we know
that there should be strings u, v, w s.t. 0c = uvw and uvkw ∈ Lc where k ≥ 0 and |v| > 0. Clearly,
for all k ≥ 2 the length of uvkw is more than c and hence uvkw 6∈ Lc. This results in a contradiction
showing that our original assumption was wrong, that is, Lc is not regular.

Comment on the correctness of the professor’s argument. Also, irrespective of whether you think
the professor’s argument is correct or not, comment on whether the language Lc is regular for all
c. Give detailed justification for all your answers.

B Recall that a context-free grammar is a 4-tuple (V ars,Σ, Start, Prod) where V ars is the set of non-
terminal symbols, Σ is the set of terminal symbols, V ars∩Σ = ∅, Start ∈ V ars is the start symbol
and Prod is a finite set of production rules. Each production rule is of the form

A → α

where A ∈ V ars and α ∈ (V ars ∪ Σ)∗.

• Construct a context free grammar for the following language L. The set of terminal symbols
is {0, 1, 2}.

L = {0l1m2n | l > m + n, m > 0, n > 0}

• Prove that any string in L is accepted by your grammar and vice-versa.

C We consider a variation of the finite-state automata accepting regular languages. Define

A = (S, Σ, S0,→, Acc)

where, as in regular languages, S is a finite set of states, Σ is a finite alphabet, S0 ⊆ S is the set of
initial states, →⊆ S × Σ× S is the transition relation and Acc ⊆ S is the set of accepting states.

However, the notion of acceptance of a string is different. Our automaton accepts collections of
infinite strings. The language L(A) of the automaton A defined above is the following set of infinite
strings over the alphabet Σ.

L(A) = {σ | σ ∈ Σω and σ has a run r in A such that inf(r) ∩Acc 6= ∅}

A run r of a string σ in A is an infinite sequence of states of A obtained by running σ from an

initial state. That is, r[0] ∈ S0 and for all i ≥ 0, r[i]
σ[i]−→ r[i + 1]. Also, for a run r, inf(r) is the

set of states appearing infinitely often in r.

Using the above notion of acceptance, construct an automaton which accepts all infinite strings σ
where (a) each symbol of σ is 0 or 1, and (b) σ contains only finitely many occurrences of 1. Your
automaton need not be deterministic.

CS5201 3

2. Algorithms

A Array a[1..n] can be sorted by insertion as follows:

sort(a, n) {
for(i = 2; i <= n; i++) {

v = a[i];
for(j = i-1; j >= 1; j--){
if(a[j] > v) a[j+1] = a[j]; else break;

}
a[j+1] = v;

}
}

Give three inputs such that for each input the if condition is evaluated (n− 1)n/2 times.

B Assume the availability of a program longestCS(a, b) that finds a longest common subsequence of
the arrays a[1..m] and b[1..n]. Give an algorithm to find a longest non-decreasing subsequence
of a sequence of numbers.

C A Conjunctive Normal Form (CNF) is a boolean expression that is an AND of boolean expressions,
each of which is the OR of one or more literals. A literal is a boolean variable or its negation.

Assume the availability of a program IsSatisfiable(c) that determines if a CNF c is satisfiable.
Find a satisfying assignment for a satisfiable CNF in time O(nf(n)) where O(f(n)) is the running
time of IsSatisfiable(c) for a CNF c of length n.

D Recall that a topological sort of a directed acyclic graph (DAG) is a total ordering of its vertices such
that if i → j is an edge in the DAG, then vertex i appears before vertex j in the ordering.

Consider a DAG with n vertices and m edges where the vertices are identified with the integers
1, . . . , n. Give a Θ(m + n) algorithm to determine if a permutation of the integers 1, . . . , n is a
topological sort of the given DAG.

E Given a set of positive integers S and a positive integer t, the subset-sum problem asks if there is a
subset S′ ⊆ S such that

∑
s∈S′ s = t. It is well-known that this problem is NP-complete.

We can define the subset relationship among multi-sets as follows. If S and S′ are multi-sets,
S′ ⊆multiset S if and only if the set of distinct elements in S′ is contained in the set of distinct
elements in S. Thus,

{3, 3, 3} ⊆multiset {2, 2, 3, 4}

since
{3} ⊆ {2, 3, 4}

This produces a subset-sum problem for multi-sets stated as follows.

Given a multi-set of positive integers S and a positive integer t, is there a multi-set S′ ⊆multiset S
such that

∑
s∈S′ s = t.

Give a polynomial-time solution to this problem.

CS5201 4

3. Logic and Formal Reasoning

Analyze the following programs and write formulas which describe the dependence of the output from
the input. For example, the program

function d(n)
{ var a = 0; // initializing variable a
while (a+a+a+2<n) { a=a+1; } // { means "begin", } means "end"
return(a); } // d(n) takes current value of a

is uniquely specified by the formula

∀x∀y [(3 ∗ d(x) ≤ x) ∧ (3 ∗ y ≤ x ⇒ y ≤ d(x))].

You can use the standard arithmetical operations +,−, ∗ in formulas, existential and universal quantifiers,
variables taking the values of natural numbers and the usual logical connectives. The inputs and outputs
in the following functions are always natural numbers. Comments explaining syntax are behind a double
slash.

[A] function e(m,n)
{ if ((m<1)||(n<1)) // || means "or"

{ return(0); } // e(m,n) is 0 if m is 0 or n is 0
var a=m; var b=n; // initializing variables
while ((a<b)||(b<a))

{ if (a<b) { a=a+m; }
else { b=b+n; } }

return(a); }

[B] function f(n)
{ var a = 0; var b = 0; var c = 0;
while (a+a+b < n)

{ c = c+b+b+b+a+a+a+1;
b = b+a+a+1; a = a+1; }

return(c); }

[C] function g(n)
{ var a=1; var b=0; var c=2;
while ((c<n)&&(n>1)) // && means "and"

{ while (b<n) { b=b+c; }
if (b>n) { b=0; }
else { a=c; b=0; }
c=c+1; }

return(a); }

[D] function h(n)
{ var a=1; var b=0;
while (b<n) { a = a+b+b+1; b=b+1; }
while (b+1<n+n) { a = a+1; b=b+2; }
return(a); }

CS5201 5

4. Principles of Programming Languages

A Consider the following expression syntax of a programming lanaguage:

e ::= v | c | e1 − e2 | e1 ∗ e2

Note that only two binary operators − and ∗ are available. c ranges over all integers, and v ranges
over all variables.

1. Use the above syntax to provide a syntax tree for the following expression:

x− 2 ∗ y − 4

2. Change the syntax above so that it will generate only syntax trees that obey a certain prece-
dence among the operators. Clearly state what precedence of operators you are assuming for
constructing the changed syntax definition.

3. Change the syntax obtained in (2) so that − is left associative and ∗ is right associative.

B The while-loop syntax such as the following

while b do S

is usually considered indispensable in any imperative language. Nevertheless, it is also widely
agreed that while-loop programs can always be converted to programs without involvement of
loops, through the deployment of recursive functions.

Provide a systematic and semantics-preserving translation of while-loop codes to ones without
while-loop (by employing function calls). Discuss how the correctness of your translation may be
affected by the calling semantics of the subject programming language under translation. Specifi-
cally, would your translation be valid if the subject code adheres to call-by-value semantics? What
about if it adheres to call-by-reference semantics?

