
CS5201 1

NATIONAL UNIVERSITY OF SINGAPORE
SCHOOL OF COMPUTING

EXAMINATION FOR
Semester 2, 2007/2008

CS 5201 - FOUNDATION IN THEORETICAL CS

April 2008 Time Allowed: 3 Hours

INSTRUCTIONS TO CANDIDATES

1. This examination paper contains FOUR(4) long questions and comprises SIX (6) pages, including
this page.

2. Answer THREE out of FOUR questions.

3. Each question should be answered in a SEPARATE answer book.

4. This is an Open Book examination.

5. Please write your Matriculation number in ALL the answer books.

CS5201 2

1. Theory of Computation ((1+2+3)+ (2+2)) = 10 marks

(A) Consider the alphabet Σ = {0, 1}. We say that a language L ⊆ Σ∗ is-blind-to two strings x and y
(where x ∈ Σ∗ and y ∈ Σ∗) if and only if

∀z ∈ Σ∗ xz ∈ L ⇔ yz ∈ L

Thus, a language L ⊆ Σ∗ defines an is-blind-to relation ≡L where we write x ≡L y if and only if L
is-blind-to strings x, y.

(i) Show that ≡L is an equivalence relation (reflexive, symmetric, and transitive).

(ii) If the ≡L relation of a language L has finitely many equivalence classes, which of the following
claims are true? Explain your answer.

• L must be regular.

• L must be non-regular.

• L may be regular or non-regular.

(iii) Consider the language L1 = {x | x ∈ Σ∗ and x ends with 01} where Σ = {0, 1}. How many
equivalence classes does the ≡L1 relation of language L1 contain?

(B) A regular expression captures a collection of strings over an alphabet. For example (0+1+2+3)∗ is
a regular expression over the alphabet {0, 1, 2, 3}. However, we can also interpret the representation
of a regular expression as a string over an enriched alphabet. For example, (0 + 1 + 2 + 3)∗ can be
seen as a string over the alphabet {0, 1, 2, 3, (,),+,∗ }.

(i) Write a context-free grammar which accepts all strings representing regular expressions over the
alphabet Σ = {0, 1, 2, 3}. Note that Σ does not contain any of the symbols conventionally used for
regular expression construction such as:

• + denoting union of regular languages,

• · denoting concatenation of regular languages,

• ∗ denoting the Kleene star operation,

• (,) denoting open/closed paranthenses,

• ε denoting the empty string.

(ii) Since any regular language is also context-free, context-free grammars can be used to describe
regular languages. Is the language accepted by your constructed context-free grammar a regular
language as well? Give justifications for your answer.

CS5201 3

2. Logic and Artificial Intelligence ((1+2+1) + (2+2) + 2) = 10 marks

(A) Recall that a formula is in disjunctive normal form if and only if it is a disjunction over conjunctive
terms of literals. For example, (x1 ∧ ¬x2) ∨ (x1 ∧ x3) ∨ (¬x1 ∧ ¬x2 ∧ ¬x3) is in disjunctive normal
form.

(i) Write the formula (x1 ∨ ¬x2) ∧ (x1 ∨ ¬x3) ∧ (x2 ∨ x3) in disjunctive normal form.

(ii) Consider a formula φ using the variables x1, x2, x3, x4, x5, x6, x7. The formula φ(x1, x2, . . . , x7)
is true if and only if exactly 2 or exactly 4 of these variables are true. How many conjunctive terms
does φ have, when written in disjunctive normal form (without any redundant terms)?

(iii) Give a polynomial-time algorithm which takes in a formula φ in disjunctive normal form and
produces the conjunctive normal form representation of ¬φ.

(B) Check the satisfiability of the following systems of clauses using resolution.

(i) x1 ∨ x2 ∨ x3, ¬x1 ∨ ¬x2, ¬x1 ∨ ¬x3, ¬x2 ∨ ¬x3.

(ii) x1 ∨ x2, ¬x1 ∨ ¬x3, ¬x2 ∨ ¬x3, x3.

(C) Determine which two of the following three formulas can be unified and write down the unifier. Here
u, v, w, x, y, z are variables, p is a predicate, f, g are functions and 0, 1, 2 are constants.

• p(1, f(f(g(0, 1), 0), v), w)

• p(1, g(0, 1), u)

• p(1, f(x, g(0, y)), z)

CS5201 4

3. Algorithms (3+4+3) = 10 marks

For any matrix A, we denote r(A) and c(A) be its number of rows and columns, respectively. Consider two
matrices A and B. Let multiply(A,B) be a procedure to compute A×B. Note that the multiplication
is allowed if c(A) = r(B). The running cost of multiply(A,B) is r(A) ∗ c(A) ∗ c(B).

(A) The following pseudocodes compute A1 × A2 × . . . × Ak. Suppose r(Ai) = i and c(Ai) = i + 1 for
i = 1, 2, . . . , k. Which of the following pseudocodes is more efficient? Explain your answer.

(i)

X = A1;
For i = 2 to k

X = multiply(X, Ai);
return X;

(ii)

X = Ak;
For i = k − 1 downto 1

X = multiply(Ai, X);
return X;

(B) Given a set of matrices S = {A1, A2, . . . , Ak}. We say S is valid if we can form a multiplication
formula Aj1 × Aj2 × . . . × Ajk

such that {j1, . . . , jk} = {1, 2, . . . , k} and c(Aji) = r(Aji+1) for
i = 1, 2, . . . , k − 1. Can you give an efficient algorithm to check if S is valid? What is the running
time of your algorithm?

(C) Let f [1], . . . , f [n] be a set of user-defined integers. Consider the recursive equation V (i, j) with
1 ≤ i ≤ j ≤ n such that V (i, i) = f [i] and

V (i, j) = max

 V (i, b i+j
2 c) + f [i]

V (b i+j
2 c+ 1, j) + f [j]

f [i] + f [j]

Suppose we want to compute V (1, n). Which of the following approaches will lead to a more efficient
algorithm?

• Dynamic programming.

• Encoding of the above recursive equation as a recursive procedure.

Explain your answer in details.

CS5201 5

4. Principles of Programming Languages (1+1+4+4) = 10 marks

Lazy evaluation is a feature of several modern programming languages that allows expressions to be
computed in a demand-driven fashion. Lazy evaluation also allows the representation of infinite data
structures, such as streams, which are also known as lazy lists. A stream is a possibly infinite sequence,
represented by a pair betwen two expressions: the head, and the tail. The expression representing the
tail is usually recursive and may loop infinitely on an eager evaluation platform, such as Java or C, where
expressions are evaluated as soon as they are bound to a variable. However, in a lazy evaluation setting,
stream elements will be produced only when there is demand for them; thus, as long as the demand is
finite, the computation will be finite too.

In a language such as Haskell, we may specify the stream of all natural numbers starting from 1 using
the following expression:

naturals = 1:(map (1+) naturals)

Here, the colon operator represents the list constructor. The expression (1+) represents the increment
operator (an alternative Haskell syntax would be \ x->x+1), and map is the higher-order function that
maps an operator to each element of a list, returning the list of results. An alternative, and possibly
more familiar, definition of the stream of natural numbers might be:

naturalsFrom n = n:(naturalsFrom (n+1)) naturals = naturalsFrom 1

Now the expression

take 10 naturals

will evaluate to the list [1,2,3,4,5,6,7,8,9,10]. Since this expression demands a finite number of
elements in the stream, the computation does not run into infinite loop.

(A) Describe informally what would be the internal representation of naturals produced by a com-
piler/interpreter for a language that allows lazy evaluation.

(B) Using one of the two programming styles given above, provide a Haskell definition for the infinite
stream containing all the powers of 2 (do not worry about minor syntactic errors).

(C) Devise a systematic translation scheme for lazy stream expressions into a language like Java. You
may describe your translation mechanism informally. Apply your translation mechanism to the
definition of naturalsFrom and provide the resulting Java code (do not worry about minor syntax
errors in your Java code).

CS5201 6

(D) The following recursive Java method prints a solution to the Towers of Hanoi puzzle.

void hanoi (int nDisks, int source, int destination, int aux) {
if (nDisks > 0) {

hanoi (nDisks-1, source, aux, destination) ;
System.out.println ("Move a disk from " + source +

" to " + destination + ".") ;
hanoi (nDisks-1, aux, destination, source) ;

}
}

For instance, the call hanoi(3,1,2,3) prints out a sequence of 7 disk moves that would take a pile
of 3 disks from pole 1 to pole 2, using pole 3 as an auxilliary.

Write a non-recursive version of this method.

END OF PAPER

