
CS5201 1

NATIONAL UNIVERSITY OF SINGAPORE
SCHOOL OF COMPUTING

EXAMINATION FOR
Semester 1, 2005/2006

CS5201 - FOUNDATION IN THEORETICAL CS

Nov 2005 Time Allowed: 3 Hours

INSTRUCTIONS TO CANDIDATES

1. This examination paper contains four(4) long questions and comprises six (6) pages, including
this page.

2. Answer three out of four questions.

3. Each question should be answered in a separate answer book.

4. ALL answers must come with the correct explanations. There is no credit for blind guesses.

5. This is an OPEN BOOK examination.

6. Please write your Matriculation Number below.

MATRICULATION NO.:

(This portion is reserved for the examiner’s use only)

Question Marks P/F Remark

1. Theory of Comp.

2. Algorithms

3. Logic

4. Prog. Languages

Total



CS5201 2

1. Theory of Computation

A Let Σ = {0, 1}. Let LR ⊆ Σ� be the language where a string s ∈ LR if and only if the number of
occurrences of the symbol 0 in s is not divisible by 5.

Construct a deterministic finite state automaton which accepts the language LR.

B Let Σ = {0, 1}. Consider the language LCF ⊆ Σ� given by:
s ∈ LCF if and only if the number of times 0 appears in s is less than or equal to the number of
times 1 appears in s.

• Argue that LCF is not regular.

• Construct a pushdown automaton which accepts the language LCF . The pushdown automaton
need not be deterministic. Acceptance is by final state. In other words, if the automaton enters
a final state at the end of reading the string s , then s is deemed to be accepted regardless of
the contents of the stack.



CS5201 3

Figure 1: S is the maximum agreement subtree of T1 and T2. It has 4 leaves.

2. Algorithms

A By calling sort(T, 1, n), we can sort the numbers in T [1..n] in increasing order. Can you analyze the
time complexity of the function sort? You may assume that sqrt(x) is a function which returns the
integer part of

√
x. Show all the steps of your analysis.

int sort(T, ii, jj) {
int i, j, k, s;
if (ii >= jj) return;
s = jj - ii + 1;
sort(T, ii, ii+sqrt(s)-1);
sort(T, ii+sqrt(s), jj);
i = ii; j = ii+sqrt(s);
for k = ii to jj {
if (T[i] > T[j]) {
R[k] = T[j]; j = j + 1;

} else {
R[k] = T[i]; i = i + 1;

}
}
for k = ii to jj {
T[k] = R[k];
}

}

B Consider two binary rooted trees T1 and T2 which are distinctly leaf-labeled by {x1, x2, . . . , xn}.
Figure 1 shows two example trees T1 and T2 which are distinctly leaf-labeled by {x1, x2, x3, x4, x5}.
Given two binary rooted trees S and T we say that S is a topological subtree of T if and only if
the following hold.

• Let LeafS be the set of leaves of S and LeafT be the set of leaves of T . Then LeafS ⊆ LeafT .

• Furthermore, let T ′ be the subtree of T induced by LeafS . Then T ′ and S are ”homeomorphic”,
that is, we can transform T ′ to S by collapsing internal nodes of T ′ with only one child.

A leaf-labeled rooted binary tree S is called an agreement subtree of T1 and T2 if S is a topological
subtree of both T1 and T2. Furthermore a maximum agreement subtree is an agreement subtree
with the largest possible number of leaves (see Figure 1 for an example). Propose an O(n2)-time
algorithm to compute the number of leaves of the maximum agreement subtree of T1 and T2.



CS5201 4

3. Logic and Formal Reasoning

A Formalize the following argument in first-order logic (you could encode it as a single first-order logic
formula). You should clearly state any predicate and function symbols that you use. Show that the
argument is incorrect by showing that the corresponding first-order logic formula is not valid.

All students are either undergraduate students or postgraduate students, but not both.
Only students are allowed to appear for qualifiers.
All postgraduate students appeared for qualifiers.
Raman and Melvin appeared for the qualifiers.
Therefore,

Raman and Melvin are postgraduate students.

B Consider the programs given in the following. Formally prove that each of these programs computes
in z the product of x and y. That is, at the end of the program z = x0 ∗ y0 where x0 and y0 are
the initial values of variables x and y. You may assume that odd(x) is a function which returns
true if x is odd and false otherwise; the code for this function is not shown. Also, x, y, z are integer
variables; the operation / denotes integer division, that is, a/b returns the integer quotient resulting
from dividing a by b where a, b are integers. (Hint: You may want to prove by induction on loop
iterations.)

z = 0;
while (x != 0){
z = z + y;
x = x - 1;

}

z = 0;
while (x != 0){
if odd(x){ z = z + y;}
y = y * 2; x = x/2;

}



CS5201 5

4. Principles of Programming Languages

A Consider an imperative programming language defined by the following BNF:

S ::= x := E

| S ; S

| let float x = E in S end

| print E

The non-terminal x represents a given set I of identifiers, the terminals :=, ;, let, =, in, , float,
print, and end are keywords, and the non-terminal E is defined by the BNF

E ::= f | x |( E )|E * E

where the non-terminal f stands for floating point numbers in the usual notation, and the terminal
* represents multiplication of floating point numbers.

As an example, the following program

let float x = 7.0 in
let float m = 2.5 in

let float f = 0.0 in
f := m;
print f;
f := f * x;
print f

end
end

end

results in the printing of the number sequence 2.5, 17.5.

Define a function vars : E → 2I that returns the set of all identifiers that occur in a given expression.
Example:

vars(1.5 * x * y) = {x, y}
Your description of vars must be constructive; it should allow to construct the set of identifiers
from any given expression using simple set operators.

B The language L′ is an extension of L such that boolean values with conjunction & can be used in
addition to floats with multiplication. The operator > tests whether the floating point number on
the left is bigger than the floating point number on the right. As an example, the following program
is in L′.

let float x = 4.5 in
let boolean b = true in

print ( x > 0.0 ) & false
end

end

Give a definition of the syntax of L′ in BNF.

C In this question, we use Java-like syntax for object-oriented languages. As in Java, we assume that all
methods are virtual; in a method call obj.f(), the class of the receiving object obj defines which
method f is called.

Some object-oriented programming languages support multiple inheritance. In this inheritance
mechanism, a class can extend multiple parent classes. Example:



CS5201 6

class A {int f() {return 1;}}

class B {int g() {return 2;}}

class C extends A, B {int h() {return 3;}}

Objects of class C can handle calls of the methods f, g and h.

Multiple inheritance leads to situations that require a careful definition of the meaning of multiple
inheritance, to avoid ambiguity in language semantics.

First construct an example program to show how programs with multiple inheritance can have
ambiguous meaning. Then, formalize an unambiguous definition of multiple inheritance that can
handle your example without an error.


