
CS5201 1

NATIONAL UNIVERSITY OF SINGAPORE
SCHOOL OF COMPUTING

EXAMINATION FOR
Semester 2, 2008/2009

CS 5201 - FOUNDATION IN THEORETICAL CS

April/May 2009 Time Allowed: 3 Hours

INSTRUCTIONS TO CANDIDATES

1. This examination paper contains four(4) long questions and comprises five (5) pages, in-
cluding this page.

2. Answer three out of four questions.

3. Each question should be answered in a separate answer book.

4. This is an OPEN BOOK examination.

5. Write your Matriculation number in all the answer books.

CS5201 2

A: Algorithm (10 marks)

(A) Magic Squares

(3 marks) A magic square of order n is an arrangement of the numbers from 1 to n2 in an n-by-n
matrix, with each number occurring exactly once, so that each row, each column, and each main
diagonal has the same sum. The figure below shows an example 3-by-3 magic square. Prove that
if a magic square of order n exists, the sum in question must be equal to (n(n2 + 1))/2.

8 1 6

3 5 7

4 9 2

15

15

15

15

1515 15 15

(B) Mode of a List of Integers

(3 marks) A mode of a list of integers is an element that occurs at least as often as each of the other
elements. Devise an algorithm that finds a mode in a list of n nondecreasing integers. For example,
the mode of the list {1, 3, 4, 4, 5, 5, 5, 6, 9} is 5. Identify what the complexity of your algorithm is in
big oh notation, O(f(n)), where f(n) is one of the usual complexity classes (e.g., log n, n, n log n,
n2, . . .).

(C) Lucas Numbers

(4 marks) Lucas numbers Ln are a sequence of numbers that are produced by the following defini-
tion:

Ln = Ln−1 + Ln−2 for n > 1

L0 = 2

L1 = 1

Consider the pseudo code algorithms Lucas1(n), Lucas2(n) and Lucas3(n) to compute the Lucas
numbers (note, Fibonacci(n) is a helper function for Lucas3(n)). Describe which of the three
procedures is the most efficient and which one is the least efficient. Explain your answer.

Algorithm 1 Lucas1(n)

1: if n = 0 then return 2;
2: else if n = 1 then return 1;
3: else return Lucas1(n-1) + Lucas1(n-2);

Algorithm 2 Lucas2(n)

1: L[0] ← 2; L[1] ← 1;
2: for i ← 2 to n
3: L[i] ← L[i-1] + L[i-2];
4: return L[n];

Algorithm 3 Lucas3(n)

1: if n = 0 then return 2;
2: else return Fibonacci(n-1) + Fibonacci(n+1);

Algorithm 4 Fibonacci(n)

1: if n ≤ 1 return n;
2: else return Fibonacci(n-1) + Fibonacci(n-2);

CS5201 3

B: Theory of Computation (10 marks)

(A) A regular expression describes a regular set of strings; expressions can be formed by listing
finite set of strings, taking the star-operation of another regular expression, taking the union
of regular expressions and taking the concatenation of regular expressions. Make a nondeter-
ministic finite automaton consisting of up to 5 states accepting the set given by the following
regular expression:

({1, 2, 3, 4, 5, 6, 7, 8, 9} · {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ · {08, 33, 58, 83}) ∪ {8, 33, 58, 83}.

(B) Recall that a composite number is a natural number consisting of two non-trivial factors; the
smallest composite numbers are 4 = 2 · 2, 6 = 2 · 3, 8 = 2 · 4 and 9 = 3 · 3. Let L be the
set of all words over the alphabet {0, 1} whose length is a composite number. Determine the
level in the Chomsky hierarchy (r.e., context-sensitive, context-free, regular) which L takes.
Prove that L goes exactly onto the level chosen (and not below or above).

(C) Consider the following statement: “There is a language L ⊆ {0, 1, 2}∗ such that L is accepted
by a nondeterministic finite automaton having 1819 states but not by a nondeterministic
finite automaton having 1818 states.” Write whether the statement is true or false and prove
your answer.

CS5201 4

C: Principles of Programming Languages (10 marks)

(1). Pure lambda calculus can be constructed using the following grammar rules:

e ::= x variable

| λ · e function abstraction

| e1 e2 application

Explain why this calculus is sometimes being referred to as the simplest universal programming
language. [2 marks]

(2). The following lambda term is often referred to as a fix-point operator. (3 marks)

fix = λ f · (λ x · f (x x)) (λ x · f (x x))

An operator g is said to be a fix-point operator if we can prove the following property:

g h = h (g h)

(i) Prove that fix has this property.

(ii) Rewrite the following function to a non-recursive counterpart with the help of the above fix
operator.

add = λ x · λ y · if x==0 then y

else y+(add (x-1) y)

(3). Consider a simple language below (3 marks)

e ::= x
| Int i | add e1 e2 | time e1 e2

| (e1, e2) | fst e | snd e
| λ x · e | e1 e2

| letrec x = e1 in e2

Local variables x may be introduced by lambda abstraction (λ x · e) and a recursive let construct
(letrec x = e1 in e2). These local variables are assumed to be lexically bound, and may shadow
previous occurrences of the same local variable.

As an example, the following program fragment has a clash in the local variable v which led to
its shadowing.

letrec v = (λ v · v) in (v 3)

To avoid such clashes in bound variables, we may uniquely rename the inner occurrence of
variable v to:

letrec v = (λ z · z) in (v 3)

Define a translation function (over the corresponding abstract syntax tree of the given language)
that would detect clashes in local variables, and provide suitable renaming whenever a clash occur.
You may assume a function fresh var that will automatically generate a new variable name.

(4). Describe clearly the key differences between mechanisms of “parametric types” and “over-
loading”. Explain how parametric types could be supported in an object-oriented programming
language, such as Java. (2 marks)

CS5201 5

D: Logic and AI (60 marks)

Problem 1 (5 + 5 = 10 marks)
Transform the following set of formulas into clausal form and refute using resolution.
{p, p→ ((t ∨ r) ∧ (∼ q∨ ∼ r)), t ∨ q, ∼ t}.

Problem 2 (10 marks)
Consider an inference rule of first order logic of the form:

⊢ A
⊢ B.

Such a rule is said to be sound if A is valid implies that B is valid too.

Show that the following inference rule for first order logic is sound.

⊢ A(a)→ B(a)

⊢ ∀xA(x)→ ∀xB(x)

Problem 3 (20 marks)
Let EQ denote the equality predicate of first order logic. In other words for every domain
U , the predicate EQ will be interpreted over this domain to be the binary relation
{(u, u) | u ∈ U}.

1. Express in first order logic a sentence describing the fact that EQ is an equivalence
relation.

2. Use EQ to form a sentence which is satisfiable in the domain U iff U has exactly 2
elements.

Problem 4 (20 marks)

1. Use the semantic tableau method to show that the following first order sentence is valid.
(∃x(A(x)→ B(x)))→ ((∀x(A(x))→ (∃x(B(x)))

2. Show that the following first order sentence is not valid by exhibiting a falsifying model.

(∃xA(x)→ ∃xB(x))→ ∀x(A(x)→ B(x))

