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INSTRUCTIONS TO CANDIDATES

1. This examination paper contains four(4) long questions and comprises six (6) pages, includ-
ing this page.

2. Answer three out of four questions.

3. Each question should be answered in a separate answer book.

4. This is an OPEN BOOK examination.

5. Write your Matriculation number in all the answer books.
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A: Algorithms (2 + 8 + 10 = 20 points)

Note: You need to write your answer in a clean and organized way. Marks will not be given to
answers that are not readable or not comprehensible. It is your job to show that your answer
is correct. Otherwise no marks will be given even if the examiner cannot show that your
answer is wrong and cannot construct a counter-example. Namely, the burden of
proof is on your side. For example, if you claim P=NP without a proof and use that claim
in your answer, no mark will be given even though the examiner cannot prove that your claim is
wrong.

Problem 1 You are given n intervals [x[i], y[i]] on the real line, where x[i] and y[i] are both real
numbers and x[i] ≤ y[i] for i from 1 through n. We say that a set S of points on the real line splits

all these intervals if for all i, there is at least one point z in S such that z falls within the interval
of [x[i], y[i]] (i.e., x[i] ≤ z ≤ y[i]). Our goal is to find a set S that can split all these intervals and
where the size of S is the smallest. We call such a set as a minimum split. If there are multiple
such sets with the same smallest size (i.e., multiple minimum splits), finding one minimum split
suffices.

For example, for the 3 intervals of [1.2, 2.04], [−1.2, 4.1], and [5.6, 9.1], the set S1 = {1.3, 0, 7.0}
splits them. Similarly, the set S2 = {1.5, 7.0} also splits them. The size of S2 is the smallest among
all sets that can split these 3 intervals, since a set with a single point (i.e., size of 1) can never
split the above 3 intervals. Thus S2 is a minimum split. There are other minimum splits (e.g.,
{1.6, 7.31}), and we only need to find one minimum split.

• (2 points) Prove that there exists a minimum split S such that for each z in S, z = y[i] for
some i between 1 and n.

• (8 points) Design an algorithm with o(n2) (notice this is small-“o”) worst-case time com-
plexity to find a minimum split. You should first describe/illustrate your algorithm idea
at a high-level, then write out all the steps in your algorithm, then briefly explain its time
complexity, and finally rigorously prove that your algorithm is correct.

Problem 2 (10 points) You are given m boxes where the jth box can accommodate at most
a[j] balls. There are n balls to be put into the boxes. Each ball has a single color. There are
total k different colors among all the balls, and there are n[i] balls with the ith color. (Obviously,
n[1] + n[2] + . . . + n[k] = n.) You may place any ball into any box except that a box is not allowed
to have multiple balls of the same color and a box’s capacity (i.e., a[j]) cannot be exceeded.

For example, assume that we have three boxes with a[1] = 2, a[2] = 1, and a[3] = 2. Assume
that we have 1 red ball, 1 blue ball, and 2 green balls. One possible placement will be: Box 1 has
a red ball, box 2 has a green ball, and box 3 has a blue ball and a green ball.

Design an algorithm to find a way to place all the balls into the boxes under the previous
constraints, in the general case (i.e., under arbitrary input). If such a placement does not exist, your
algorithm should output that no such placement exists. Your algorithm should have polynomial
worst-case time complexity and space complexity, with respect to both m and n. You should
first describe/illustrate your algorithm idea at a high-level, then write out all the steps in your
algorithm, then briefly explain its time and space complexity, and finally rigorously prove that
your algorithm is correct.
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B: Theory of Computation

All questions below carry equal marks.

Q1. Let #a(w) denote the number of a’s in the string w. Similarly, let #b(w) denote the number
of b’s in the string w. Give a DFA (deterministic finite automata) for the following language L

over the alphabet Σ = {a, b}.
L = {w ∈ Σ∗ : for each prefix of u of w, #a(u)−#b(u) ≤ 3 and #b(u)−#a(u) ≤ 3}.

Q2. Give a CFG (context free grammar) for the language:
L = {aibj : 3i ≤ j ≤ 5i}.

Q3. Let wR denote the reverse of string w. For example, (abaab)R = baaba.
Show that {wwRw : w ∈ {a, b}∗} is not context free.

Q4. For any language A, let A∗ denote the language {w1w2 . . . wn : w1, w2, . . . , wn ∈ A}. Here
n can be 0.

Prove or disprove:
Suppose L∗ is a recursive language over the alphabet Σ = {a, b}. Then L is a recursive language.
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C: Principles of Programming Languages

Consider a language called Raster for describing pages to be sent to a black-on-white raster printer.
The printer uses a bitmap format, consisting of a two-dimensional 150×85 array called outputPage

of boolean values.
An array value outputPage[x][y] is true iff the corresponding pixel at position (x, y) should be

black.
Programs in the language Raster consist of possibly empty sequences of commands to print

black points, black horizontal lines and black rectangles on the initially white page. Commands
are separated by semicolon symbols. An example program would be:

point(0,4); line(2,3,5); rectangle(4,0,5,6)

The upper left corner of the corresponding outputPage looks as follows:

0 1 2 3 4 5 6 7 8

0 • •
1 • •
2 • •
3 • • • • •
4 • • •
5 • •
6 • •
7

Note that the point command gives the (x, y) coordinate of a black point. The line command
gives the (x, y) coordinate of the starting point of the line, followed by the number of points in the
line. The rectangle command gives the (x, y) coordinates of the upper left corner, followed by
the (x, y) coordinates of the lower right corner. The following restrictions apply:

• All (x, y) coordinates must lie within the size limits of outputPage.

• No lines or rectangles must extend beyond the size limits of outputPage.

• The second point (lower right corner) of a rectangle must not lie above or to the left of the
first point (upper right corner).

Also note that several commands may affect the same pixel position. In this case, the pixel remains
black, once one command makes it black.

1. (5 marks) Describe the language Raster in BNF notation. You may use a non-terminal
symbol n to denote integers.

2. (10 marks) The informal description of language Raster above mentions restrictions on the
integers to be used in points, lines and rectangles. Formalize these restrictions by describing
a typing function

well-typed : Raster→ boolean

which returns true iff the given program complies with the restrictions. Use a notation in your
description that can serve as a basis for a computer implementation of the typing function.

3. (15 marks) Assume from now on, that the restrictions are all met, and therefore the given
programs are well-typed.

One approach to formally describe the semantics of Raster as a function is to see a program
as a transformation function from a given page to a new page in which the commands have
been executed:

interprete : Raster× boolean[150][85]→ boolean[150][85]
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where boolean[150][85] are two-dimensional boolean arrays of pixels described above. Thus, in
order to obtain the page described by a given program R, we can apply interprete(R,white),
where white is a 150× 85 array containing only false boolean values.

Define the function interprete such that it can serve as a basis for a computer implementation
of an interpreter.

Important Your function must be purely declarative, in a sense that the arrays are never
destructively changed. The only operation on arrays that is allowed is the function

blacken : boolean[150][85]× int× int→ boolean[150][85]

which returns a new array that is the same as the given array, except that the boolean value
at the given (x, y) position is true, regardless of its value in the given array.

You may freely use recursion and helper functions in your solution. Do not use loops in which
assignments to variables occur that denote arrays.

4. (15 marks) Consider an extension of Raster called Raster++ that allows the definition of
integer constants, as in the following example:

let a = 10 in

rectangle(0,0,a,a), line(0,a,50),

let b = 20 in

point(b,a)

end

end

To the right of the = symbol, only integer constants are allowed. The same constant symbol
may be used in nested let declarations. In this case, any reference to the symbol refers to
the innermost declaration. For example, the program

let c = 3 in

let c = 77 in

point(0,c)

end

end

is equivalent to the program

point(0,77)

• Describe Raster++ in BNF.

• Describe a transformation of Raster++ to Raster that preserves the meaning of pro-
grams. For this, formally describe a function

transform : Raster++→ Raster

Hint: Use environments of the form

env : symbol→ int

and an environment extension function

·[· ← ·] : env× symbol× int→ env

such that

e[x← v](y) = v if y = x and
e[x← v](y) = e(y) if y 6= x.
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D: Logic and AI ( 3 + (2 + 2) + (2+1) ) = 10 marks

(A) We can represent a program as a logical formula. For example the function f given below

int f(x){ return x; }

can captured by the first order logic formula ∀Xeq(f(X),X) where eq is the equality predicate
and f is a function symbol. Represent the following program as a first order logic formula.

int g(x, y, z){

1 if (x > y){

2 if (x > z){

3 return x;

4 else return z;}

5 else return y;}}

(B) Given a program, a program path is a sequence of program statements (from beginning to the
end of the program) which obeys the control flow restrictions of the programming language
constructs. Thus, in the program of part (A) we know that (1, 2, 3) is a legal program path,
and so is (1, 2, 4). However (1, 2, 5) is not a legal program path because once the branch in
line 2 is executed either 3 (if-then part) or line 4 (if-else part) must be executed as per the
control flow restrictions of the if-then-else construct.

Program paths can be associated with a first order logic formula free from quantifiers. Let
us call this the path formula. For example, the path (1, 2, 3) in the program of part (A) is
associated with the formula x > y∧x > z. In other words, such formula are free from universal
quantifiers and any variable appearing in the formula is implicitly existentially quantified.
Thus, the path formula for the path (1, 2, 3) in the program of part (A) corresponds to the
following first-order logic formula.

∃x∃y∃z x > y ∧ x > z

Given a program and a path in the program

• is it possible for the path formula to be unsatisfiable?

• is it possible for the path formula to be valid?

Give detailed justification with example programs instead of simple yes/no answers.

(C) Given a program P, and path π in the program can you suggest an automated procedure to
compute the path formula of π in P .

Show the working of your algorithm of your algorithm on the path (1, 2, 3, 4, 5, 6, 7) of the
following program.

1 input x, y, z;

2 if (y > 0){

3 z = y * 2;

4 x = y - 2;

5 x = x - 2;}

6 if (z == x){

7 output("How did I get here");

}


