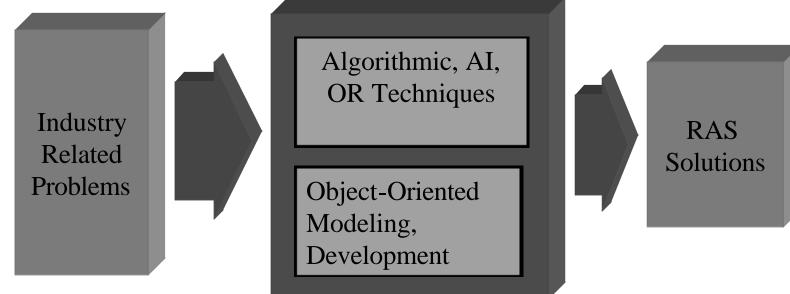


Berth Allocation Problem – A Case Study in Algorithmic Approaches

Leong Hon Wai, RAS Research Group, SoC, NUS leonghw@comp.nus.edu.sg

Content:

- * Problem
- Complexity & Relationships
- ***** Approaches
- ***** Findings

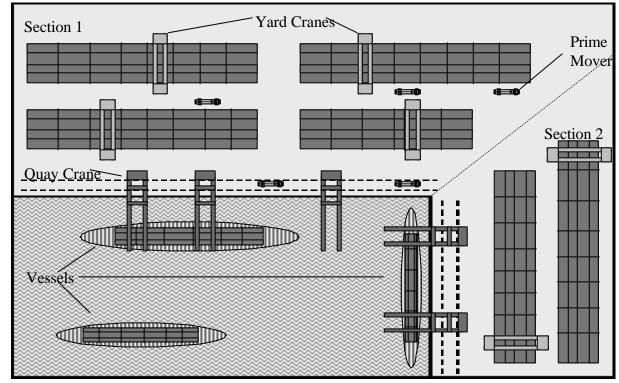

The RAS Group

* Real World Problems

- ☐ Resource Allocation / Scheduling / Planning
- ☐ Resource Optimization Problems

Solution Technologies:

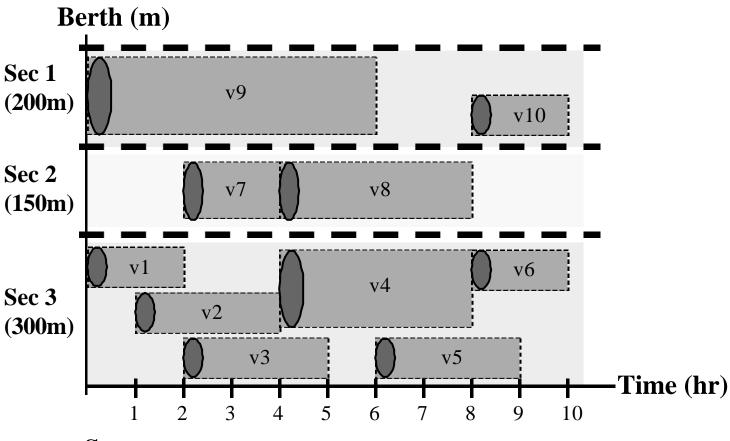
- □ *Algorithms, AI, OR/MP methods;*
- ☐ Object-Oriented System Development



The Berth Allocation Problem

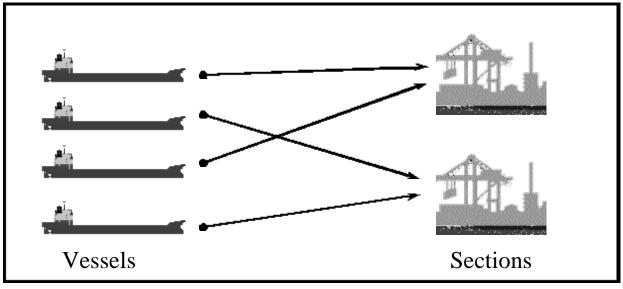
Problem:

Vessels arriving at a container transhipment port are berthed in a section of wharf, and the containers they ferry are then transferred to other vessels


or to the port.

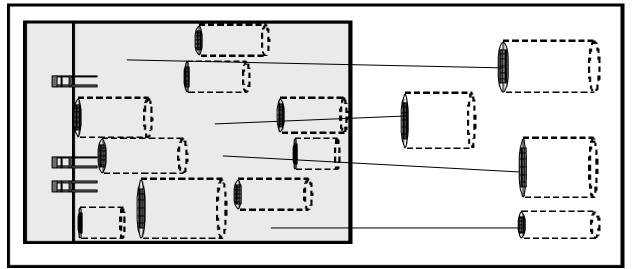
Objective:

The BAP involves finding good berth allocations so as to minimise the movement of container traffic across wharf sections.


Schematic View of BAP Solution

Summary:

• Each vessel is assigned to a section (partition) and a wharfmark within the section (pack)


Two-Stage Approach

Partitioning

Assign vessels to sections

Packing

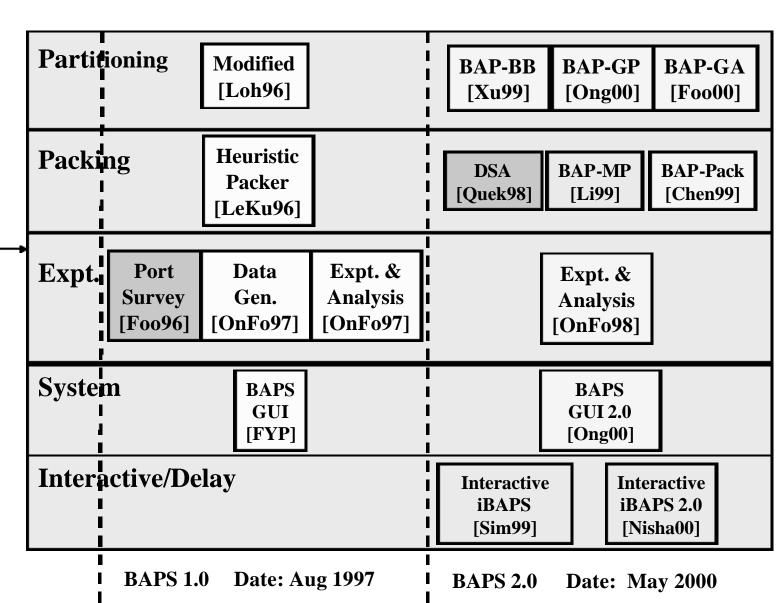
Assign wharfmarks to vessels

BAP: Planning vs Operations

❖ BAPS (Planning System)

- □ *Longer Planning Time Window;*
- ☐ More interested in overall capacity handling
- ☐ Global Key Performance Indicators (KPI's)
- ☐ *Used for Planning Resources and Manpower*

❖iBAPS (interactive System)


- ☐ Shorter Time Horizon
- ☐ Fast Handling of change requests
- ☐ Other Operational issues

BAP Research Direction

- Rigorous Research
- **❖** Realistic Domain Modeling
 - □ BAP Port Survey Document
- Comprehensive Quality Benchmarking
 - □ BAP Data Generation Sub-System
 - □ BAP Experiment Sub-System
- * Research Tool
 - □ Ability to Study "What-If" Scenarios
 - ☐ Planning vs. Operational Systems
- Oriented towards Technology Transfer
 - ☐ Prototype Development (Proof-of-concept)
 - □ Deployment potential

The BAP Road Map

[Loh96]

BAP Modelling

Port & Section Information

 $S = \{S_1, S_2, ..., S_m\}$ -- sections in the port P

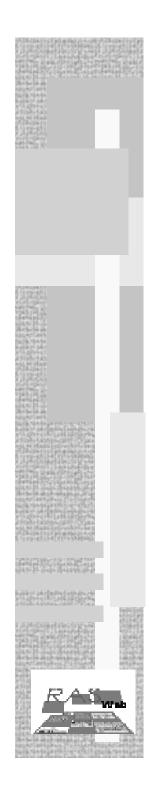
 \triangleright Section S_k has length L_k

 \triangleright S_0 is a pseudo-section

 $D = [d_{k1}] - inter-section distance matrix (m+1 x m+1)$

Vessel Information

 $V = \{V_1, V_2, ..., V_n\}$ -- vessels arriving at a port P


 \triangleright Vessel V_k -- length l_k , arrival time a_k , departure time d_k ,

 \triangleright V_0 is a pseudo-vessel (model import-export containers)

Container Information

 $F = [f_{ij}]$ -- container flow matrix (n+1 x n+1)

BAP Modelling (continued....)

Planning Information

□ A given planning time horizon

* TO DO:

 \square Assign each vessel V_i to a section S_k and a wharfmark w_i within that section

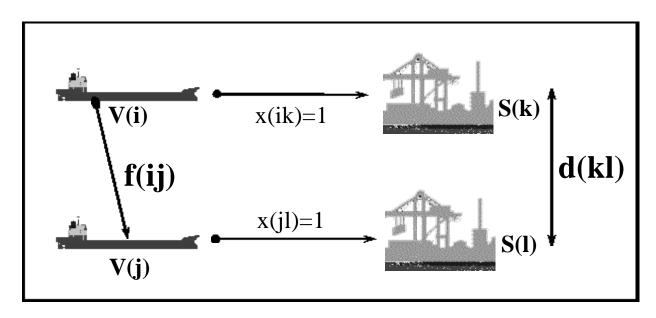
Objective:

- ☐ Minimize the Transhipment Cost
- □ Secondary: Minimize number of unassigned vessels

BAP Modelling (continued...)

Decision Variables:

$$X = [x_{ik}], \text{ where } x_{ik} = \begin{cases} 1 & \text{if } v_i \text{ is assigned to } s_k \\ 0 & \text{otherwise} \end{cases}$$


 w_i = wharf mark assigned to vessel v_i

❖ Transshipment Cost: (QAP-cost?)

Minimize
$$\sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{k=0}^{m} \sum_{l=0}^{m} f_{ij} d_{kl} x_{ik} x_{jl}$$

Transshipment Cost

- ➤ Assume that
 - ✓ Transshipment f(ij) containers from V(i) to V(j)
 - ✓ Vessel V(i) is assigned to section S(k) [x(ik)=1]
 - ✓ Vessel V(j) is assigned to section S(l) [x(jl)=1]
 - ✓ Distance from S(k) to S(l) is d(kl)
- > Then Transshipment cost is given by

$$f(ij) * d(kl) * x(ik) * x(jl)$$

The BAP Problem Model

***** Objective

☐ Minimize Transshipment Cost

Minimize
$$\sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{k=0}^{m} \sum_{l=0}^{m} f_{ij} d_{kl} x_{ik} x_{jl}$$

***** Constraints

- □ One section per vessel
- □ Vessels berthed cannot exceed section capacity
- □ One berthing location per vessel
- □*No overlap of vessels*
- □*No straddling across section boundaries*

Constraints (Math Modelling)

❖ Vessels assigned to one section each

$$\sum_{k=1}^{m} x_{ik} = 1 \quad \text{for all } i = 1, 2, ..., n$$

Vessels do not straddle between sections

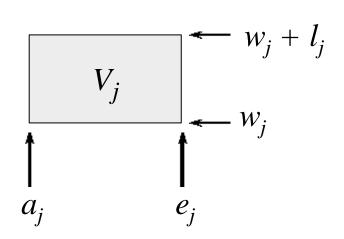
$$(w_i + l_i) * x_{ik} \le L_k * x_{ik}$$
 for all $i = 1, 2, ..., n$

Section capacity is not exceeded

$$\sum_{i=1}^{n} x_{ik} l_i y_{it} \leq L_k \quad \text{for all } t = 0, ..., T \text{ and } k=1, ..., m$$

Overlap Constraints

❖ For all distinct vessels i and j,


$$(x_{ik} x_{jk} = 1)$$
 \rightarrow one of the following must be true

$$e_i < a_j$$
 $w_i + l_i < w_j$ $a_i > e_j$ $w_i > w_j + l_j$

$$w_{i} + l_{i} \longrightarrow V_{i}$$

$$w_{i} \longrightarrow \uparrow$$

$$a_{i} \qquad e_{i}$$

(Summary of Constraints)

. ♠.	\sim	4	•	4
◆`◆	· On	ctr	ดเท	TC
`♦`	Con	1211	am	112


- □ Vessel must lie entirely within a section
- □ Concurrent vessels does not exceed section capacity
- ☐ *Implicit:* No collision (space-and-time overlap)

Assumptions

- ☐ Sections are straight lines
- ☐ Any vessel can berth anywhere in any section
- □ Does not consider quay crane / prime movers
- ☐ Arrival and departure times are **fixed in advance**

Simplifications

□ *Approx inter-section distances (centre-to-centre)*

Model Augmentation

- **❖** To Model "Import/Export" Containers
 - ☐ Use a Pseudo Vessel (assigned to pseudo Section 0)
- **❖** To Handle Unassigned Vessels
 - ☐ *Have a Pseudo Section (very far away)*
 - ☐ Incorporate a Penalty in the Cost Function

BAP Literature Review

- **Related Problems**
 - □ *QAP* (*Quadratic Assignment Problem*)
 - □ *GAP* (airport Gate Allocation Problem)
- **❖ QAP (Quadratic Assignment Problem)**
 - ☐ aka Facility Layout Problem
 - ☐ Widely studied
 - ☐ Given n facilities, to be located in n fixed places
- **❖** GAP (airport Gate Allocation Problem)
 - □ arriving airplanes to be allocated gates in airport
- **❖ NP-hard Problems**
 - \square QAP \rightarrow GAP \rightarrow BAP
 - ☐ QAP is NP-Hard, so are GAP, BAP

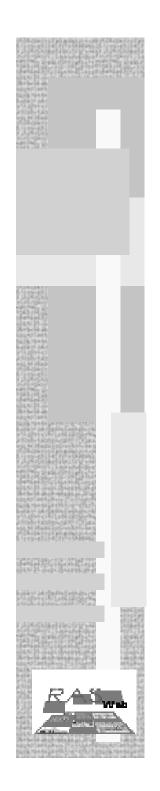
BAP Problem Hierarchy

- **❖ QAP (Quadratic Assignment Problem)**
 - \square *Mapping:* n *facilities* \rightarrow n *fixed places*
 - □ (facilities=vessel); (places=sections)
 - □ *No time dimension; 1 vessel per section;*
- **❖** GAP (airport Gate Allocation Problem)
 - \square *Mapping: airplanes* \rightarrow *gates in airport*
 - □ (airplaces=vessel); (gates=sections)
 - ☐ Time Dim; 1 vessel per section at any given time
- **❖ BAP** (*seaport* Berth Allocation Problem)
 - \square *Mapping: vessels* \rightarrow *wharfmarks in sections*
 - ☐ *Time Dimension*;
 - ☐ Many vessels per section at any given time

BAP – Research into Solutions

❖ BAP Domain Survey

- ☐ *Understand domain entity, problem, issues*
- ☐ *Know the data*


BAP Literature Research

- \square $QAP \rightarrow GAP \rightarrow BAP$
- \square *GP* (graph partitioning) \rightarrow *BAP-Partitioning*
- □ Both QAP and GP are well-known problems
- □ BAP-Packing aka DSA (dynamic storage allocation)
- \square *BAP-Packing rectangle packing and approx alg.*

BAP Partitioning Algorithms

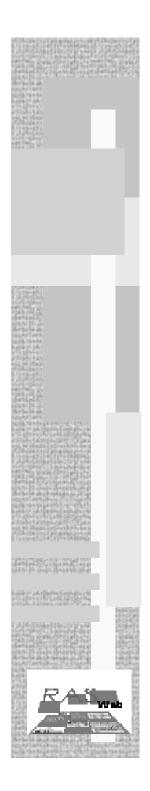
- **BAP Partitioning**
 - ☐ Generalization of QAP and Graph Partitioning
 - **□** *NP-hard*
- **Several Different Approaches**
 - ☐ Graph Partitioning (fast, good results)
 - ☐ Genetic Algorithm (slower, very good results)
 - ☐ Branch-and-Bound (very slow, optimal results)
- User can do Time-vs-Quality Tradeoffs

BAP Partitioning Alg (cont...)

*	Graph	Partitioning	Alg [OTW]
			<i>7</i> L J

- □ Adapted from GP algorithm by KL and FM
- ☐ Constructive Methods for Initial Solutions
- ☐ Iterative Improvement using Modified FM
- □ Post-Processor using Multiple-Knapsack

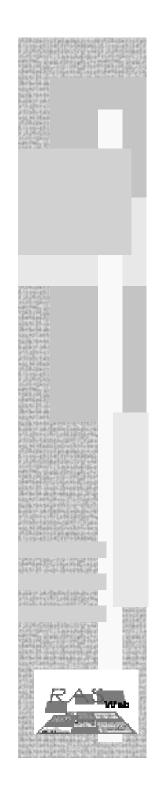
❖ Genetic Algorithm [FHM]


- □ *Expt with standard GA: group-based, ordered-based*
- □ *Domain-specific GA: Grouping GA*

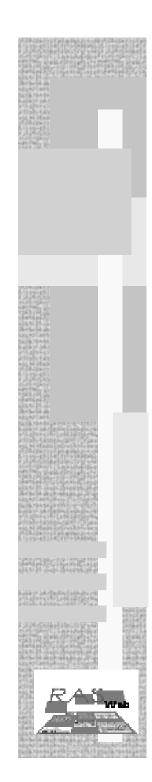
❖ Branch-and-Bound & Sim. Annealing [XDG]

- ☐ Works only for small problem sizes
- ☐ *Useful tool for checking solutions*

BAP Packing Algorithms


♣ D A D Doolsing	ic NID band
BAP Packing	
lacksquare Studied as DS	SA problem (memory management)
☐ Similar to rec	tangle packing with constraints
□ Best known is	s 3-approx algorithm [Gergov]
	Work: Tabu Search, Ant Colony, etc
*Research Bin	Packing & Approx Algs [CLW
☐ Comprehensi	ve Study of bin-packing methods
☐ Implemented	and Integrated
Major Finding	gs
☐ Online Alg:	(Best: Best-Fit, First-Fit)
\Box Offline Alg:	(Best: First-Fit)
☐ Approx. Alg	(Good results after "Compaction")

BAP Packing (continued...)


- **❖** Theoretical Study of BAP-Packing [LSC]
 - \square Define BAP-Pack(W, D, h)
 - \triangleright h = Max Length of any vessel
 - \triangleright D = "Max-Density" of the Set of Vessels
 - ➤ W = Section Length Needed to Pack all the Vessels
 - □ Study problem for small h
 - ➤ Negative Results: eg: BAP-Pack(4,4,2) not feasible
 - ➤ Positive Results: eg: BAP-Pack(1.5D, D, 2) is feasible
 - ➤ Positive Results: eg: BAP-Pack(2D, D, 3) is feasible
 - ☐ Extrapolate Results from Insights Gained

The BAP Architecture **BAPS** Analysis **Engine** Module **BAP Package Data Sources GUI** Module **BAP Solver** Interactive Data Module Generation **iBAPS BAP-XX BAP-XX** Expt. **Partitioner Packer** Module

BAP Data Generation

- **❖** Real world data are classified,
 - □ *No published benchmarks*
- **❖** Our Group Spent ~1/2 yr to collect data
 - □ Port periodicals, PSA reports, internet web sites
- **❖ Developed BAP Data Generation Sub-System**
 - \square Data set = (Section+Vessel+Transshipment) scenarios
 - □ Realistic statistics: vessel length, #containers, etc.
- **❖** Fast-Generation and Repeatability
 - ☐ Can Generate Port Scenarios

BAP Port Scenario Generated

- **❖ Simple Case (SC1)**
 - ☐ Two Sections: 600m each
- **❖ PSA Brani-Terminal Case (SC5)**
 - □ Four Sections: 600m, 480m, 800m, 200m
- **Experimentation Cases (SC2-4)**
 - **□** 5 Sections: 1-1-1-1 600m each
 - □ 3 Sections: 1-3-1 600m, 1800m, 600m
 - □ 3 Sections: 2-1-2 1200m, 600m, 1200m

Other Port Parameters

Vary the business of the port

☐ Define ABD (Average-Berthing-Demand)

➤ Does not include vessel-to-vessel tolerance

ABD	SC1 2 sections	SC2 5 sections	SC3 3 sections	SC4 3 sections	SC5 4 sections
0.25	<i>d101-d105</i> 60			 	(Brani)
0.40	d106-d110 96	<i>d121-d125</i> 240	<i>d141-d145</i> 240	<i>d161-d165</i> 240	<i>d181-d185</i> 166
0.50	<i>d111-d115</i> 120	<i>d126-d130</i> 302	<i>d146-d150</i> 302	<i>d166-d170</i> 302	<i>d186-d190</i> 302
0.60	<i>d115-d120</i> 144	<i>d131-d135</i> 362	d151-d155 362	d171-d175 362	<i>d191-d195</i> 362
0.70		d136-d140 422	d156-d160 422	d176-d180 422	d196-d200 422

Acknowledgements

- **❖ Steven Quek**
- **❖ Ku Liang Ping**
- **\$** Loh Swee Nam
- **❖ David Ong Tat Wee**
- **❖ Foo Hee Meng**
- **❖ Li Shuai Cheng**
- Chen Li Wen
- *Xu Degui

---- The End ----